You need JavaScript to view this

Influence of the host (Cho) and of the cultivation strategy on glycan structures and molecular properties of human thyrotrophin; Influencia do hospedeiro (Cho) e da estrategia de cultivo nas estruturas glicidicas e propriedades moleculares da tireotrofina humana

Abstract

A novel, fast and practical two-step purification strategy, consisting of a classical ion exchange and a reversed-phase high performance liquid chromatography (RP-HPLC), for rapidly obtaining CHO-derived hTSH, was set up providing r-hTSH with 70% yield and > 99% purity. A consistent increase of {approx} 60% in the secretion yields of r-hTSH-IPEN was observed by changing cell culture CO{sub 2} conditions from 5% CO{sub 2} to air environment (0.03% CO{sub 2}). The overall quality of the products obtained under both conditions was evaluated for what concerns N-glycan structure, charge isomers and biological activity in comparison with a well known recombinant biopharmaceutical (Thyrogen{sup R}) and with a pituitary reference preparation (p-hTSH) from National Hormone and Pituitary Program (NIDDK, USA). The N-glycans identified in the recombinant preparations were of the complex type, presenting bi-, tri- and tetra-antennary structures, sometimes fucosylated, 86-88% of the identified structures being sialylated at variable levels. The three most abundant structures were monosialylated glycans, representing {approx} 69% of all identified forms in the three preparations. The main difference was found in terms of antennarity, with 8-10% more bi-antennary structures obtained in the absence of CO{sub 2} and 7-9% more tri-antennary structures in its presence. In the case of p-hTSH,  More>>
Publication Date:
Jul 01, 2007
Product Type:
Thesis/Dissertation
Report Number:
INIS-BR-4621
Resource Relation:
Other Information: TH: Tese (Ph.D.); 95 refs., 22 figs., 12 tabs
Subject:
60 APPLIED LIFE SCIENCES; BIOTECHNOLOGY; CELL CULTURES; CRYSTALLIZATION; GAMMA DETECTION; GAMMA RADIATION; IODINE; IODINE 125; REFINING; TRH; TSH
OSTI ID:
21096966
Research Organizations:
Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
Country of Origin:
Brazil
Language:
Portuguese
Other Identifying Numbers:
TRN: BR08V3353107598
Availability:
Available from INIS in electronic form
Submitting Site:
BRN
Size:
92 pages
Announcement Date:
Dec 08, 2008

Citation Formats

Oliveira, Joao Ezequiel de. Influence of the host (Cho) and of the cultivation strategy on glycan structures and molecular properties of human thyrotrophin; Influencia do hospedeiro (Cho) e da estrategia de cultivo nas estruturas glicidicas e propriedades moleculares da tireotrofina humana. Brazil: N. p., 2007. Web.
Oliveira, Joao Ezequiel de. Influence of the host (Cho) and of the cultivation strategy on glycan structures and molecular properties of human thyrotrophin; Influencia do hospedeiro (Cho) e da estrategia de cultivo nas estruturas glicidicas e propriedades moleculares da tireotrofina humana. Brazil.
Oliveira, Joao Ezequiel de. 2007. "Influence of the host (Cho) and of the cultivation strategy on glycan structures and molecular properties of human thyrotrophin; Influencia do hospedeiro (Cho) e da estrategia de cultivo nas estruturas glicidicas e propriedades moleculares da tireotrofina humana." Brazil.
@misc{etde_21096966,
title = {Influence of the host (Cho) and of the cultivation strategy on glycan structures and molecular properties of human thyrotrophin; Influencia do hospedeiro (Cho) e da estrategia de cultivo nas estruturas glicidicas e propriedades moleculares da tireotrofina humana}
author = {Oliveira, Joao Ezequiel de}
abstractNote = {A novel, fast and practical two-step purification strategy, consisting of a classical ion exchange and a reversed-phase high performance liquid chromatography (RP-HPLC), for rapidly obtaining CHO-derived hTSH, was set up providing r-hTSH with 70% yield and > 99% purity. A consistent increase of {approx} 60% in the secretion yields of r-hTSH-IPEN was observed by changing cell culture CO{sub 2} conditions from 5% CO{sub 2} to air environment (0.03% CO{sub 2}). The overall quality of the products obtained under both conditions was evaluated for what concerns N-glycan structure, charge isomers and biological activity in comparison with a well known recombinant biopharmaceutical (Thyrogen{sup R}) and with a pituitary reference preparation (p-hTSH) from National Hormone and Pituitary Program (NIDDK, USA). The N-glycans identified in the recombinant preparations were of the complex type, presenting bi-, tri- and tetra-antennary structures, sometimes fucosylated, 86-88% of the identified structures being sialylated at variable levels. The three most abundant structures were monosialylated glycans, representing {approx} 69% of all identified forms in the three preparations. The main difference was found in terms of antennarity, with 8-10% more bi-antennary structures obtained in the absence of CO{sub 2} and 7-9% more tri-antennary structures in its presence. In the case of p-hTSH, complex, high-mannose and hybrid N-glycan structures were identified, most of them containing sialic acid and/or sulphate terminal residues. The two most abundant structures were shown to contain one or two sulphate residues, one of which unexpectedly bound to galactose. The sialic acid-galactose linkage was also determined, having found that 68 3 {+-} 10% was in the {alpha} 2,6 and 32 {+-} 10% in the {alpha}2,3 conformation. No remarkable difference in charge isomers was observed between the three recombinant preparations, the isoelectric focusing profiles showing six distinct bands in the 5.39 - 7.35 pl range. A considerably different distribution, with more forms in the acidic region, was observed, however, for two native pituitary preparations. When analyzed via a simple and precise single-dose bioassay, a slightly higher bioactivity (p<0.02) was found for r-hTSH-IPEN obtained in the presence of CO{sub 2}. This potency however, was not significantly different from that of Thyrogen, the two preparations being 1.6-1.8-fold more potent than the reference preparation of p-hTSH. We can conclude that, at least for the case of CHO-derived r-hTSH, different production processes do not greatly affect its N-glycan structures, charge isomer distribution or biological activity. Thyrogen and r-hTSH-IPEN, when compared to p-hTSH-NIDDK, presented about a 7% increased relative molecular mass (MR) determined by MALDI-TOF-MS analysis. This technique, allowing accurate heterodimer mass determinations, provided MR values of 29611, 29839 and 27829, respectively. Significant differences in hydrophobic properties, evaluated by RP-HPLC, were found for r-hTSH and p-hTSH. Also differences related to carbohydrate moiety, mainly in the amount of sialic acid and galactose, were found for these preparations, a much lower content of these sugar residues being observed in p-hTSH.(author)}
place = {Brazil}
year = {2007}
month = {Jul}
}