You need JavaScript to view this

Dynamics of binary mixtures in inhomogeneous temperatures

Abstract

A dynamical description for fluid binary mixtures with variable temperature and concentration gradient contributions to entropy and internal energy is given. By using mass, momentum and energy balance equations together with the standard expression for entropy production, a generalized Gibbs-Duhem relation is obtained which takes into account thermal and concentration gradient contributions. Then an expression for the pressure tensor is derived. As examples of applications, interface behavior and phase separation have been numerically studied in two dimensions neglecting the contributions of the velocity field. In the simplest case with a constant thermal gradient, the growth exponent for the averaged size of domains is found to have the usual value z = 1/3 and the domains appear elongated in the direction of the thermal gradient. When the system is quenched by contact with external walls, the evolution of temperature profiles in the system is shown and the domain morphology is characterized by interfaces perpendicular to the thermal gradient.
Authors:
Gonnella, G; Piscitelli, A; [1]  Lamura, A [2] 
  1. Dipartimento di Fisica, Universita di Bari and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, via Amendola 173, 70126 Bari (Italy)
  2. Istituto Applicazioni Calcolo, CNR, via Amendola 122/D, 70126 Bari (Italy)
Publication Date:
Mar 14, 2008
Product Type:
Journal Article
Resource Relation:
Journal Name: Journal of Physics. A, Mathematical and Theoretical (Online); Journal Volume: 41; Journal Issue: 10; Other Information: PII: S1751-8113(08)61830-2; DOI: 10.1088/1751-8113/41/10/105001; Country of input: International Atomic Energy Agency (IAEA)
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BINARY MIXTURES; ENERGY BALANCE; ENTROPY; EQUATIONS; INTERFACES; MASS BALANCE; MATHEMATICAL EVOLUTION; MATHEMATICAL MODELS; MORPHOLOGY; TEMPERATURE GRADIENTS; TENSORS; VELOCITY
OSTI ID:
21089657
Country of Origin:
United Kingdom
Language:
English
Other Identifying Numbers:
Journal ID: ISSN 1751-8121; TRN: GB08Q7948099867
Availability:
Available from http://dx.doi.org/10.1088/1751-8113/41/10/105001;INIS
Submitting Site:
GBN
Size:
13 pages
Announcement Date:
Nov 13, 2008

Citation Formats

Gonnella, G, Piscitelli, A, and Lamura, A. Dynamics of binary mixtures in inhomogeneous temperatures. United Kingdom: N. p., 2008. Web. doi:10.1088/1751-8113/41/10/105001; COUNTRY OF INPUT: INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA).
Gonnella, G, Piscitelli, A, & Lamura, A. Dynamics of binary mixtures in inhomogeneous temperatures. United Kingdom. https://doi.org/10.1088/1751-8113/41/10/105001; COUNTRY OF INPUT: INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA)
Gonnella, G, Piscitelli, A, and Lamura, A. 2008. "Dynamics of binary mixtures in inhomogeneous temperatures." United Kingdom. https://doi.org/10.1088/1751-8113/41/10/105001; COUNTRY OF INPUT: INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA).
@misc{etde_21089657,
title = {Dynamics of binary mixtures in inhomogeneous temperatures}
author = {Gonnella, G, Piscitelli, A, and Lamura, A}
abstractNote = {A dynamical description for fluid binary mixtures with variable temperature and concentration gradient contributions to entropy and internal energy is given. By using mass, momentum and energy balance equations together with the standard expression for entropy production, a generalized Gibbs-Duhem relation is obtained which takes into account thermal and concentration gradient contributions. Then an expression for the pressure tensor is derived. As examples of applications, interface behavior and phase separation have been numerically studied in two dimensions neglecting the contributions of the velocity field. In the simplest case with a constant thermal gradient, the growth exponent for the averaged size of domains is found to have the usual value z = 1/3 and the domains appear elongated in the direction of the thermal gradient. When the system is quenched by contact with external walls, the evolution of temperature profiles in the system is shown and the domain morphology is characterized by interfaces perpendicular to the thermal gradient.}
doi = {10.1088/1751-8113/41/10/105001; COUNTRY OF INPUT: INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA)}
journal = []
issue = {10}
volume = {41}
place = {United Kingdom}
year = {2008}
month = {Mar}
}