You need JavaScript to view this

Analysis of sodium metal by X-ray fluorescence spectrometry (I). Determination of Hf, Mo, Nb, Ta, Ti, V and Zr; Analisis de sodio metal por espectrometria de fluorescencia de rayos X. Determinacion de Hf, Mo, Nb, Ta, Ti, V y Zr

Abstract

A method allowing the determination of trace quantities of Hf, Mo, Nb, Ta, Ti, Vi and Zr in sodium metal previous transformation into Na{sub 2}S0{sub 4} is described. The enrichment of the impurities is performed through a coprecipitation technique in sulfuric medium by using Fe{sup 3}+ as a collector and cupferron or phenyfluorone as the precipitating reagent. The matrix influence and the best concentration of the collector (10/{mu}/ml), adequate pH (1,3 or 4, respectively) and optimum filter type (Millipore BSWP02500 or BDWP04700, respectively) have been studied, as well as the precipitation recoveries corresponding to the reagent above. It has been demonstrated the batter efficiency of the cupferron for determining all the Impurities. Detection limits range from 0.01 to 0.2 ppm., depending on the element, for samples 4 g in weight. An automatic spectrometer attached to a 16 K minicomputer and X-ray tube with a gold anode (2250-2700 W) are used. The Interferences between the lines ZrK{alpha} (2{sup n}d order) - HfL{alpha} and TiK{beta} - VK {alpha} have been studied and the respective correction coefficients have been deduced. (Author) 8 refs.
Authors:
Publication Date:
Jul 01, 1981
Product Type:
Technical Report
Report Number:
JEN-486
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; SODIUM; TRACE AMOUNTS; X-RAY FLUORESCENCE ANALYSIS; K CODES; HAFNIUM; MOLYBDENUM; NIOBIUM; TANTALUM; TITANIUM; VANADIUM
OSTI ID:
21008439
Research Organizations:
Junta de Energia Nuclear (JEN), Madrid (Spain)
Country of Origin:
Spain
Language:
Spanish
Other Identifying Numbers:
TRN: ES08B0178
Availability:
Commercial reproduction prohibited; OSTI as DE21008439
Submitting Site:
SPN
Size:
27 pages
Announcement Date:
Apr 21, 2008

Citation Formats

Diaz-Guerra, J P. Analysis of sodium metal by X-ray fluorescence spectrometry (I). Determination of Hf, Mo, Nb, Ta, Ti, V and Zr; Analisis de sodio metal por espectrometria de fluorescencia de rayos X. Determinacion de Hf, Mo, Nb, Ta, Ti, V y Zr. Spain: N. p., 1981. Web.
Diaz-Guerra, J P. Analysis of sodium metal by X-ray fluorescence spectrometry (I). Determination of Hf, Mo, Nb, Ta, Ti, V and Zr; Analisis de sodio metal por espectrometria de fluorescencia de rayos X. Determinacion de Hf, Mo, Nb, Ta, Ti, V y Zr. Spain.
Diaz-Guerra, J P. 1981. "Analysis of sodium metal by X-ray fluorescence spectrometry (I). Determination of Hf, Mo, Nb, Ta, Ti, V and Zr; Analisis de sodio metal por espectrometria de fluorescencia de rayos X. Determinacion de Hf, Mo, Nb, Ta, Ti, V y Zr." Spain.
@misc{etde_21008439,
title = {Analysis of sodium metal by X-ray fluorescence spectrometry (I). Determination of Hf, Mo, Nb, Ta, Ti, V and Zr; Analisis de sodio metal por espectrometria de fluorescencia de rayos X. Determinacion de Hf, Mo, Nb, Ta, Ti, V y Zr}
author = {Diaz-Guerra, J P}
abstractNote = {A method allowing the determination of trace quantities of Hf, Mo, Nb, Ta, Ti, Vi and Zr in sodium metal previous transformation into Na{sub 2}S0{sub 4} is described. The enrichment of the impurities is performed through a coprecipitation technique in sulfuric medium by using Fe{sup 3}+ as a collector and cupferron or phenyfluorone as the precipitating reagent. The matrix influence and the best concentration of the collector (10/{mu}/ml), adequate pH (1,3 or 4, respectively) and optimum filter type (Millipore BSWP02500 or BDWP04700, respectively) have been studied, as well as the precipitation recoveries corresponding to the reagent above. It has been demonstrated the batter efficiency of the cupferron for determining all the Impurities. Detection limits range from 0.01 to 0.2 ppm., depending on the element, for samples 4 g in weight. An automatic spectrometer attached to a 16 K minicomputer and X-ray tube with a gold anode (2250-2700 W) are used. The Interferences between the lines ZrK{alpha} (2{sup n}d order) - HfL{alpha} and TiK{beta} - VK {alpha} have been studied and the respective correction coefficients have been deduced. (Author) 8 refs.}
place = {Spain}
year = {1981}
month = {Jul}
}