You need JavaScript to view this

Study of link transitions between superdeformed well and normally deformed well in Hg{sup 192} and research and development for a new concept of {gamma} photons detection: the Agata array; Etude des liens entre puits superdeforme et puits normalement deforme dans {sup 192}Hg et recherche et developpement pour un nouveau concept de detection de photons {gamma}: le multidetecteur AGATA

Abstract

The atomic nucleus can adopt a very elongated shape with an axis ratio 2:1, this is the superdeformation phenomenon. Nowadays more than 300 superdeformed bands have been identified at high spin, but the determination of excitation energies, spins and parities of the associated states have been established for only one tenth of these bands. The former quantities (E{sup *}, I, {pi}) can only be determined via the linking gamma-transitions between the superdeformed (sd) and the normally deformed (nd) states. Within the framework of this thesis, we have investigated the Hg{sup 192} nucleus in order to establish E{sup *}, I and {pi}. This nucleus is predicted to be doubly magic at superdeformation and hence is taken as a reference in the mass {approx} 190 region. The experiment was carried out at Strasbourg using the Euroball-IV array and the vivitron accelerator. The obtained results are not convincing and seem to be at the limit of the performances of Euroball. Next generation of arrays will abandon the Compton-shields and use tracking concept to reconstruct the trajectories of incident photons, and therefore we expect a huge increase of efficiency. The second part of this work was focused on the research and development work for  More>>
Authors:
Publication Date:
Jul 15, 2006
Product Type:
Thesis/Dissertation
Report Number:
FRNC-TH-7065
Resource Relation:
Other Information: TH: These physique nucleaire; 123 refs.; Also available from Bibliotheque universitaire de Sciences, Domaine universitaire Batiment 407, 91405 - Orsay Cedex (France)
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; BGO DETECTORS; COMPUTERIZED SIMULATION; DATA ANALYSIS; DE-EXCITATION; ENERGY ABSORPTION; FOUR-PI DETECTORS; G CODES; GAMMA DETECTION; MERCURY 192; SUPERDEFORMED NUCLEI
OSTI ID:
21000798
Research Organizations:
Paris-11 Univ., 91 - Orsay (France)
Country of Origin:
France
Language:
French
Other Identifying Numbers:
TRN: FR0703995025664
Availability:
Available from INIS in electronic form
Submitting Site:
FRN
Size:
164 pages
Announcement Date:
Apr 11, 2008

Citation Formats

Roccaz, J. Study of link transitions between superdeformed well and normally deformed well in Hg{sup 192} and research and development for a new concept of {gamma} photons detection: the Agata array; Etude des liens entre puits superdeforme et puits normalement deforme dans {sup 192}Hg et recherche et developpement pour un nouveau concept de detection de photons {gamma}: le multidetecteur AGATA. France: N. p., 2006. Web.
Roccaz, J. Study of link transitions between superdeformed well and normally deformed well in Hg{sup 192} and research and development for a new concept of {gamma} photons detection: the Agata array; Etude des liens entre puits superdeforme et puits normalement deforme dans {sup 192}Hg et recherche et developpement pour un nouveau concept de detection de photons {gamma}: le multidetecteur AGATA. France.
Roccaz, J. 2006. "Study of link transitions between superdeformed well and normally deformed well in Hg{sup 192} and research and development for a new concept of {gamma} photons detection: the Agata array; Etude des liens entre puits superdeforme et puits normalement deforme dans {sup 192}Hg et recherche et developpement pour un nouveau concept de detection de photons {gamma}: le multidetecteur AGATA." France.
@misc{etde_21000798,
title = {Study of link transitions between superdeformed well and normally deformed well in Hg{sup 192} and research and development for a new concept of {gamma} photons detection: the Agata array; Etude des liens entre puits superdeforme et puits normalement deforme dans {sup 192}Hg et recherche et developpement pour un nouveau concept de detection de photons {gamma}: le multidetecteur AGATA}
author = {Roccaz, J}
abstractNote = {The atomic nucleus can adopt a very elongated shape with an axis ratio 2:1, this is the superdeformation phenomenon. Nowadays more than 300 superdeformed bands have been identified at high spin, but the determination of excitation energies, spins and parities of the associated states have been established for only one tenth of these bands. The former quantities (E{sup *}, I, {pi}) can only be determined via the linking gamma-transitions between the superdeformed (sd) and the normally deformed (nd) states. Within the framework of this thesis, we have investigated the Hg{sup 192} nucleus in order to establish E{sup *}, I and {pi}. This nucleus is predicted to be doubly magic at superdeformation and hence is taken as a reference in the mass {approx} 190 region. The experiment was carried out at Strasbourg using the Euroball-IV array and the vivitron accelerator. The obtained results are not convincing and seem to be at the limit of the performances of Euroball. Next generation of arrays will abandon the Compton-shields and use tracking concept to reconstruct the trajectories of incident photons, and therefore we expect a huge increase of efficiency. The second part of this work was focused on the research and development work for the AGATA (Advanced GAmma Tracking Array) project. We have performed simulations with the GEANT-4 code and developed tracking methods to reconstruct pair-creation events. The full AGATA will be operational around 2015 and will enhance by around two orders of magnitude the observational limits. (author)}
place = {France}
year = {2006}
month = {Jul}
}