You need JavaScript to view this

A study of the fluorescence of the rare gases excited by nuclear particles. Use of the principle for the detection of nuclear radiation by scintillation; Etude de la fluorescence des gaz rares excites par des particules nucleaires. Utilisation pour la detection des rayonnements nucleaires par scintillation

Abstract

In the first part is studied the properties of atoms excited by the passage of {alpha} particles through the various rare gases at atmospheric pressure. A spectral analysis of the emitted light showed that certain impurities play an important part in producing the fluorescence, and it has led to the conclusion that the light emission contains at least two components - one very short - lived due to the direct deexcitation of the rare gas, the other relatively slower due to the energy transfers to the impurity. The measurement of the life-time of the excited states has confirmed this foregoing hypothesis, the rapid part of the impulse is extremely short: less than 2,25.10{sup -9} s in the case of xenon; the slower part has a life-time depending directly on the nitrogen concentration, nitrogen being the impurity giving the largest effect in all cases. The study of rare gases under the influence of an electric field has made it possible to show that the amount of light produced by an {alpha} particle can be multiplied (by 60, for example, in a field of 600 V:cm) so that the luminescent efficiency is greater than in the case of INaTI. In the second  More>>
Authors:
Koch, L [1] 
  1. Commissariat a l'Energie Atomique, Saclay (France). Centre d'Etudes Nucleaires
Publication Date:
Dec 15, 1959
Product Type:
Thesis/Dissertation
Report Number:
CEA-R-1532
Resource Relation:
Other Information: TH: These sciences; 71 refs
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; ALPHA PARTICLES; BUILDUP; CROSS SECTIONS; DE-EXCITATION; ELECTRIC FIELDS; ELECTRON-ATOM COLLISIONS; EMISSION SPECTRA; ENERGY RESOLUTION; EXCITATION; EXCITED STATES; FLUORESCENCE; GAS SCINTILLATION DETECTORS; IMPURITIES; ION-ATOM COLLISIONS; IONIZATION POTENTIAL; LIFETIME; NEUTRON DETECTION; PHOTOMULTIPLIERS; PHOTON-ATOM COLLISIONS; RARE GASES; RECOMBINATION
OSTI ID:
20951823
Research Organizations:
CEA Saclay, 91 - Gif-sur-Yvette (France); Faculte des Sciences de l'Universite de Paris, 75 (France)
Country of Origin:
France
Language:
French
Other Identifying Numbers:
TRN: FR07R1532102049
Availability:
Available from INIS in electronic form
Submitting Site:
FRN
Size:
80 pages
Announcement Date:
Dec 21, 2007

Citation Formats

Koch, L. A study of the fluorescence of the rare gases excited by nuclear particles. Use of the principle for the detection of nuclear radiation by scintillation; Etude de la fluorescence des gaz rares excites par des particules nucleaires. Utilisation pour la detection des rayonnements nucleaires par scintillation. France: N. p., 1959. Web.
Koch, L. A study of the fluorescence of the rare gases excited by nuclear particles. Use of the principle for the detection of nuclear radiation by scintillation; Etude de la fluorescence des gaz rares excites par des particules nucleaires. Utilisation pour la detection des rayonnements nucleaires par scintillation. France.
Koch, L. 1959. "A study of the fluorescence of the rare gases excited by nuclear particles. Use of the principle for the detection of nuclear radiation by scintillation; Etude de la fluorescence des gaz rares excites par des particules nucleaires. Utilisation pour la detection des rayonnements nucleaires par scintillation." France.
@misc{etde_20951823,
title = {A study of the fluorescence of the rare gases excited by nuclear particles. Use of the principle for the detection of nuclear radiation by scintillation; Etude de la fluorescence des gaz rares excites par des particules nucleaires. Utilisation pour la detection des rayonnements nucleaires par scintillation}
author = {Koch, L}
abstractNote = {In the first part is studied the properties of atoms excited by the passage of {alpha} particles through the various rare gases at atmospheric pressure. A spectral analysis of the emitted light showed that certain impurities play an important part in producing the fluorescence, and it has led to the conclusion that the light emission contains at least two components - one very short - lived due to the direct deexcitation of the rare gas, the other relatively slower due to the energy transfers to the impurity. The measurement of the life-time of the excited states has confirmed this foregoing hypothesis, the rapid part of the impulse is extremely short: less than 2,25.10{sup -9} s in the case of xenon; the slower part has a life-time depending directly on the nitrogen concentration, nitrogen being the impurity giving the largest effect in all cases. The study of rare gases under the influence of an electric field has made it possible to show that the amount of light produced by an {alpha} particle can be multiplied (by 60, for example, in a field of 600 V:cm) so that the luminescent efficiency is greater than in the case of INaTI. In the second part the characteristics of the rare gases acting as scintillators is examined, the most important property being the absence of fluorescence saturation when the intensity of the excitation incident on the gas is very large. This, together with the very short time of scintillation has made it possible to study a certain number of nuclear physical applications (heavy particle energy-measurements, kinetic studies on nuclear reactors, neutron spectroscopy). (author) [French] On etudie dans la premiere partie les proprietes des atomes excites par le passage de particules {alpha} dans les differents gaz rares a la pression atmospherique. L'etude spectrale de la lumiere emise a montre que certaines impuretes jouent un role considerable dans la fluorescence et on a ete amene a penser que l'emission de lumiere comporte au moins deux composantes, l'une tres breve due a la desexcitation directe du gaz rare, l'autre relativement plus lente, due au transfert d'energie sur les impuretes. La mesure des durees de vie des etats excites a confirme l'hypothese precedente, la partie breve de l'impulsion est extremement courte: inferieure a 2,25.10{sup -9} s dans le cas du xenon, la partie plus lente a une duree qui depend etroitement de la concentration d'azote, l'azote etant l'impurete dont le role est preponderant dans tous les cas. L'etude des gaz rares soumis a un champ electrique a permis de montrer que la quantite de lumiere produite par une particule {alpha} peut etre multipliee (par 60 dans un champ de 600 V/cm par exemple) ce qui correspond a un rendement de luminescence superieur a celui de INa TI. Dans la deuxieme partie on a etudie les caracteristiques des gaz rares comme scintillateurs, la plus importante est l'absence de saturation de la fluorescence lorsque la densite d'excitation transmise au gaz devient tres grande. Ceci joint au temps de scintillation tres court a permis d'etudier un certain nombre d'applications a la physique nucleaire (mesure d'energie des particules lourdes, etude cinetique des reacteurs nucleaires, spectroscopie des neutrons...). (auteur)}
place = {France}
year = {1959}
month = {Dec}
}