Abstract
The critical diffusion of neutrons in iron is due to the magnetisation fluctuations which occur in ferromagnetic substances in the neighbourhood of the Curie temperature. The fluctuations can be described in correlation terms; a correlation function {gamma}{sub R{sub vector}} (t) is defined, {gamma}{sub R{sub vector}} (t) = <S{sub 0{sub vector}} (0) S{sub R{sub vector}} (t)> mean value of the scalar product of a reference spin and a spin situated at a distance (R) from the first and considered at the instant t. In chapter I we recall the generalities on neutron diffusion cross-sections; a brief summary is given of the theory of VAN HOVE, who has shown that the magnetic diffusion cross section of neutrons is the Fourier transformation of the correlation function. In chapter Il we study the spatial dependence of the correlation function, assumed to be independent of time. It can then be characterised by two parameters K{sub 1} and r{sub 1}, by means of which the range and intensity of the correlations can be calculated respectively. After setting out the principle of the measurement of these parameters, we shall describe the experimental apparatus. The experimental values obtained are in good agreement with the calculations, and the agreement
More>>
Ericson-Galula, M
[1]
- Commissariat a l'Energie Atomique, Saclay (France). Centre d'Etudes Nucleaires
Citation Formats
Ericson-Galula, M.
Study by neutron diffusion of magnetic fluctuations in iron in the curie temperature region; Etude des fluctuations d'aimantation dans le fer au voisinage de la temperature de curie par diffusion des neutrons.
France: N. p.,
1958.
Web.
Ericson-Galula, M.
Study by neutron diffusion of magnetic fluctuations in iron in the curie temperature region; Etude des fluctuations d'aimantation dans le fer au voisinage de la temperature de curie par diffusion des neutrons.
France.
Ericson-Galula, M.
1958.
"Study by neutron diffusion of magnetic fluctuations in iron in the curie temperature region; Etude des fluctuations d'aimantation dans le fer au voisinage de la temperature de curie par diffusion des neutrons."
France.
@misc{etde_20912809,
title = {Study by neutron diffusion of magnetic fluctuations in iron in the curie temperature region; Etude des fluctuations d'aimantation dans le fer au voisinage de la temperature de curie par diffusion des neutrons}
author = {Ericson-Galula, M}
abstractNote = {The critical diffusion of neutrons in iron is due to the magnetisation fluctuations which occur in ferromagnetic substances in the neighbourhood of the Curie temperature. The fluctuations can be described in correlation terms; a correlation function {gamma}{sub R{sub vector}} (t) is defined, {gamma}{sub R{sub vector}} (t) = <S{sub 0{sub vector}} (0) S{sub R{sub vector}} (t)> mean value of the scalar product of a reference spin and a spin situated at a distance (R) from the first and considered at the instant t. In chapter I we recall the generalities on neutron diffusion cross-sections; a brief summary is given of the theory of VAN HOVE, who has shown that the magnetic diffusion cross section of neutrons is the Fourier transformation of the correlation function. In chapter Il we study the spatial dependence of the correlation function, assumed to be independent of time. It can then be characterised by two parameters K{sub 1} and r{sub 1}, by means of which the range and intensity of the correlations can be calculated respectively. After setting out the principle of the measurement of these parameters, we shall describe the experimental apparatus. The experimental values obtained are in good agreement with the calculations, and the agreement is better if it is supposed that the second and not the first neighbours of an iron atom are magnetically active, as proposed by Neel. In chapter III we study the evolution with time of the correlation function; this evolution is characterised by a parameter {lambda} depending on the temperature, which occurs in the diffusion equation obeyed by the magnetisation fluctuations: {delta}M{sub vector}/{delta}t = {lambda} {nabla}{sup 2} M{sub vector}. The principle of the measurement of {lambda} is given, after which the modifications carried out on the experimental apparatus mentioned in chapter II are described. The results obtained are then discussed and compared with the theoretical forecasts of De Gennes, mode by using the Heinsenberg model and a simple band model; our values in good agreement with those calculated in the Heisenberg model and exclude the band model used. Finally, in chapter IV we recall the chief results obtained. (author) [French] La diffusion critique des neutrons dans le fer est due aux fluctuations d'aimantation qui existent dans les substances ferromagnetiques au voisinage de la temperature de Curie. Les fluctuations peuvent se decrire en termes de correlations; on definit une fonction de correlation: {gamma}{sub R{sub vector}} (t), {gamma}{sub R{sub vector}} (t) <S{sub 0{sub vector}} (0) S{sub R{sub vector}} (t)>, valeur moyenne du produit scalaire d'un spin de reference et d'un spin situe a la distance (R) du premier et considere a l'instant t. Dans le chapitre I nous rappelons les generalites sur les sections efficaces de diffusion des neutrons; nous donnons un bref resume de la theorie de VAN HOVE qui a montre que la section efficace de diffusion magnetique des neutrons est la transformee de FOURIER de la fonction de correlation. Dans le chapitre II nous etudions la dependance spatiale de la fonction de correlation, supposee independante du temps. On peut alors la caracteriser par deux parametres K{sub 1} et r{sub 1} qui permettent de calculer respectivement la portee et l'intensite des correlations. Apres avoir expose le principe de la mesure de ces parametres, nous decrirons l'appareillage experimental. Les valeurs experimentales obtenues sont en bon accord avec celles calculees, l'accord est meilleur si on suppose que ce sont les deuxiemes et non les premiers voisins d'un atome de fer qui sont magnetiquement actifs, ainsi que l'a propose NEEL. Dans le chapitre III nous etudions l'evolution dans le temps de la fonction de correlation; cette evolution est caracterisee par un parametre {lambda} dependant de la temperature, qui intervient dans l'equation de diffusion, a laquelle obeissent les fluctuations d'aimantation {delta}M{sub vector}/{delta}t = {lambda} {nabla}{sup 2} M{sub vector}. Nous donnons le principe de la mesure de {lambda}; puis nous decrivons les modifications apportees a l'appareillage experimental decrit dans le chapitre II. Nous discutons ensuite les resultats obtenus et nous les comparons aux previsions theoriques de DE GENNES, faites en utilisant le modele de Heisenberg et un modele simple de bandes; nos valeurs sont en bon accord avec celles calculees dans le modele de Heisenberg; elles excluent le modele de bandes utilise. Enfin, dans le chapitre IV, nous rappelons les principaux resultats obtenus. (auteur)}
place = {France}
year = {1958}
month = {Dec}
}
title = {Study by neutron diffusion of magnetic fluctuations in iron in the curie temperature region; Etude des fluctuations d'aimantation dans le fer au voisinage de la temperature de curie par diffusion des neutrons}
author = {Ericson-Galula, M}
abstractNote = {The critical diffusion of neutrons in iron is due to the magnetisation fluctuations which occur in ferromagnetic substances in the neighbourhood of the Curie temperature. The fluctuations can be described in correlation terms; a correlation function {gamma}{sub R{sub vector}} (t) is defined, {gamma}{sub R{sub vector}} (t) = <S{sub 0{sub vector}} (0) S{sub R{sub vector}} (t)> mean value of the scalar product of a reference spin and a spin situated at a distance (R) from the first and considered at the instant t. In chapter I we recall the generalities on neutron diffusion cross-sections; a brief summary is given of the theory of VAN HOVE, who has shown that the magnetic diffusion cross section of neutrons is the Fourier transformation of the correlation function. In chapter Il we study the spatial dependence of the correlation function, assumed to be independent of time. It can then be characterised by two parameters K{sub 1} and r{sub 1}, by means of which the range and intensity of the correlations can be calculated respectively. After setting out the principle of the measurement of these parameters, we shall describe the experimental apparatus. The experimental values obtained are in good agreement with the calculations, and the agreement is better if it is supposed that the second and not the first neighbours of an iron atom are magnetically active, as proposed by Neel. In chapter III we study the evolution with time of the correlation function; this evolution is characterised by a parameter {lambda} depending on the temperature, which occurs in the diffusion equation obeyed by the magnetisation fluctuations: {delta}M{sub vector}/{delta}t = {lambda} {nabla}{sup 2} M{sub vector}. The principle of the measurement of {lambda} is given, after which the modifications carried out on the experimental apparatus mentioned in chapter II are described. The results obtained are then discussed and compared with the theoretical forecasts of De Gennes, mode by using the Heinsenberg model and a simple band model; our values in good agreement with those calculated in the Heisenberg model and exclude the band model used. Finally, in chapter IV we recall the chief results obtained. (author) [French] La diffusion critique des neutrons dans le fer est due aux fluctuations d'aimantation qui existent dans les substances ferromagnetiques au voisinage de la temperature de Curie. Les fluctuations peuvent se decrire en termes de correlations; on definit une fonction de correlation: {gamma}{sub R{sub vector}} (t), {gamma}{sub R{sub vector}} (t) <S{sub 0{sub vector}} (0) S{sub R{sub vector}} (t)>, valeur moyenne du produit scalaire d'un spin de reference et d'un spin situe a la distance (R) du premier et considere a l'instant t. Dans le chapitre I nous rappelons les generalites sur les sections efficaces de diffusion des neutrons; nous donnons un bref resume de la theorie de VAN HOVE qui a montre que la section efficace de diffusion magnetique des neutrons est la transformee de FOURIER de la fonction de correlation. Dans le chapitre II nous etudions la dependance spatiale de la fonction de correlation, supposee independante du temps. On peut alors la caracteriser par deux parametres K{sub 1} et r{sub 1} qui permettent de calculer respectivement la portee et l'intensite des correlations. Apres avoir expose le principe de la mesure de ces parametres, nous decrirons l'appareillage experimental. Les valeurs experimentales obtenues sont en bon accord avec celles calculees, l'accord est meilleur si on suppose que ce sont les deuxiemes et non les premiers voisins d'un atome de fer qui sont magnetiquement actifs, ainsi que l'a propose NEEL. Dans le chapitre III nous etudions l'evolution dans le temps de la fonction de correlation; cette evolution est caracterisee par un parametre {lambda} dependant de la temperature, qui intervient dans l'equation de diffusion, a laquelle obeissent les fluctuations d'aimantation {delta}M{sub vector}/{delta}t = {lambda} {nabla}{sup 2} M{sub vector}. Nous donnons le principe de la mesure de {lambda}; puis nous decrivons les modifications apportees a l'appareillage experimental decrit dans le chapitre II. Nous discutons ensuite les resultats obtenus et nous les comparons aux previsions theoriques de DE GENNES, faites en utilisant le modele de Heisenberg et un modele simple de bandes; nos valeurs sont en bon accord avec celles calculees dans le modele de Heisenberg; elles excluent le modele de bandes utilise. Enfin, dans le chapitre IV, nous rappelons les principaux resultats obtenus. (auteur)}
place = {France}
year = {1958}
month = {Dec}
}