You need JavaScript to view this

Current algebra; Algebre des courants

Abstract

The first three chapters of these lecture notes are devoted to generalities concerning current algebra. The weak currents are defined, and their main properties given (V-A hypothesis, conserved vector current, selection rules, partially conserved axial current,...). The SU (3) x SU (3) algebra of Gell-Mann is introduced, and the general properties of the non-leptonic weak Hamiltonian are discussed. Chapters 4 to 9 are devoted to some important applications of the algebra. First one proves the Adler- Weisberger formula, in two different ways, by either the infinite momentum frame, or the near-by singularities method. In the others chapters, the latter method is the only one used. The following topics are successively dealt with: semi leptonic decays of K mesons and hyperons, Kroll- Ruderman theorem, non leptonic decays of K mesons and hyperons ( {delta}I = 1/2 rule), low energy theorems concerning processes with emission (or absorption) of a pion or a photon, super-convergence sum rules, and finally, neutrino reactions. (author) [French] La premiere partie de ce cours (trois premiers chapitres), traite des generalites concernant l'algebre de courants. Apres une definition rapide des courants faibles et un rappel de leurs proprietes (hypothese V-A, conservation du courant vecteur, regles de selection, courant axial  More>>
Authors:
Jacob, M [1] 
  1. Commissariat a l'Energie Atomique, Saclay (France). Centre d'Etudes Nucleaires
Publication Date:
Jul 01, 1967
Product Type:
Technical Report
Report Number:
CEA-R-3346
Resource Relation:
Other Information: 46 refs
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; ALGEBRAIC CURRENTS; BASIC INTERACTIONS; CURRENT ALGEBRA; HYPERONS; KAONS; LEPTONIC DECAY; QUARK MODEL; SU-3 GROUPS
OSTI ID:
20726982
Research Organizations:
CEA Saclay, 91 - Gif-sur-Yvette (France)
Country of Origin:
France
Language:
French
Other Identifying Numbers:
TRN: FR06R3346038427
Availability:
Available from INIS in electronic form
Submitting Site:
FRN
Size:
[164] pages
Announcement Date:
May 24, 2006

Citation Formats

Jacob, M. Current algebra; Algebre des courants. France: N. p., 1967. Web.
Jacob, M. Current algebra; Algebre des courants. France.
Jacob, M. 1967. "Current algebra; Algebre des courants." France.
@misc{etde_20726982,
title = {Current algebra; Algebre des courants}
author = {Jacob, M}
abstractNote = {The first three chapters of these lecture notes are devoted to generalities concerning current algebra. The weak currents are defined, and their main properties given (V-A hypothesis, conserved vector current, selection rules, partially conserved axial current,...). The SU (3) x SU (3) algebra of Gell-Mann is introduced, and the general properties of the non-leptonic weak Hamiltonian are discussed. Chapters 4 to 9 are devoted to some important applications of the algebra. First one proves the Adler- Weisberger formula, in two different ways, by either the infinite momentum frame, or the near-by singularities method. In the others chapters, the latter method is the only one used. The following topics are successively dealt with: semi leptonic decays of K mesons and hyperons, Kroll- Ruderman theorem, non leptonic decays of K mesons and hyperons ( {delta}I = 1/2 rule), low energy theorems concerning processes with emission (or absorption) of a pion or a photon, super-convergence sum rules, and finally, neutrino reactions. (author) [French] La premiere partie de ce cours (trois premiers chapitres), traite des generalites concernant l'algebre de courants. Apres une definition rapide des courants faibles et un rappel de leurs proprietes (hypothese V-A, conservation du courant vecteur, regles de selection, courant axial partiellement conserve,...), l'on introduit l'algebre de Gell-Mann SU (3) x SU (3), et discute les proprietes generales de l'Hamiltonien faible non leptonique. Les chapitres IV a IX sont consacres a des applications importantes de l'algebre des courants. En premier lieu l'on demontre la formule de Adler et Weisberger, par deux methodes differentes, celle dite du repere de moment infini et celle des singularites proches. Cette derniere est seule utilisee dans la suite. Puis, l'on traite successivement les problemes suivants: desintegrations semi-leptoniques des mesons K et des hyperons, theoreme de Kroll-Ruderman, desintegrations non leptoniques des mesons K et des hyperons (explication de la regle {delta}I = 1/2), theoremes de basse energie concernant les processus avec emission ou absorption d'un meson {pi} ou d'un photon, relations de super-convergence, et enfin, reactions dites 'neutrino'. (auteur)}
place = {France}
year = {1967}
month = {Jul}
}