You need JavaScript to view this

Solution of the diffusion equation (2 dimensions, several media, arbitrary boundary); Resolution de l'equation de diffusion (deux dimensions, plusieurs regions, contours quelconques)

Abstract

Quite often practical problems involve relatively complicated geometrical shapes and several very different media. The discretization technique used here (variable mesh spacings) has the following advantages: it enables one to approximate curved contours more easily, to distribute the mesh points more economically and to smooth out discontinuities due to two very different media (danger of poor convergence). The method of programming by subroutines makes available to engineers and scientists who are not well acquainted with numerical analysis, a simple and foolproof iterative method: it suffices to pass by all the mesh points and to call the corresponding subroutine each time. (author) [French] Un probleme pratique est souvent caracterise par une geometrie non simple et des milieux tres differents. La technique de maillage utilisee (pas variable) permet d'approximer plus aisement les contours courbes, de repartir economiquement les points et de regulariser les discontinuites dues a deux milieux tres differents (difficulte de convergence). La technique de programmation par sous-programmes met a la disposition des ingenieurs non specialises dans le domaine numerique une methode iterative simple et sure: il suffit de passer tous les points en revue et d'appeler a chaque fois le sous-programme correspondant. (auteur)
Authors:
Nuyen, Luong Than [1] 
  1. Commissariat a l'Energie Atomique, Saclay (France). Centre d'Etudes Nucleaires
Publication Date:
May 15, 1965
Product Type:
Thesis/Dissertation
Report Number:
CEA-R-2867
Resource Relation:
Other Information: TH: These ES-sciences aeronautiques; 6 refs
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BOUNDARY CONDITIONS; CONVERGENCE; DIFFUSION EQUATIONS; FINITE DIFFERENCE METHOD; MESH GENERATION; TWO-DIMENSIONAL CALCULATIONS
OSTI ID:
20723407
Research Organizations:
CEA Saclay, 91 - Gif-sur-Yvette (France); Ecole Nationale Superieure de l'Aeronautique, 31 - Toulouse (France)
Country of Origin:
France
Language:
English; French
Other Identifying Numbers:
TRN: FR05R2867035907
Availability:
Available from INIS in electronic form
Submitting Site:
FRN
Size:
123 pages
Announcement Date:
May 15, 2006

Citation Formats

Nuyen, Luong Than. Solution of the diffusion equation (2 dimensions, several media, arbitrary boundary); Resolution de l'equation de diffusion (deux dimensions, plusieurs regions, contours quelconques). France: N. p., 1965. Web.
Nuyen, Luong Than. Solution of the diffusion equation (2 dimensions, several media, arbitrary boundary); Resolution de l'equation de diffusion (deux dimensions, plusieurs regions, contours quelconques). France.
Nuyen, Luong Than. 1965. "Solution of the diffusion equation (2 dimensions, several media, arbitrary boundary); Resolution de l'equation de diffusion (deux dimensions, plusieurs regions, contours quelconques)." France.
@misc{etde_20723407,
title = {Solution of the diffusion equation (2 dimensions, several media, arbitrary boundary); Resolution de l'equation de diffusion (deux dimensions, plusieurs regions, contours quelconques)}
author = {Nuyen, Luong Than}
abstractNote = {Quite often practical problems involve relatively complicated geometrical shapes and several very different media. The discretization technique used here (variable mesh spacings) has the following advantages: it enables one to approximate curved contours more easily, to distribute the mesh points more economically and to smooth out discontinuities due to two very different media (danger of poor convergence). The method of programming by subroutines makes available to engineers and scientists who are not well acquainted with numerical analysis, a simple and foolproof iterative method: it suffices to pass by all the mesh points and to call the corresponding subroutine each time. (author) [French] Un probleme pratique est souvent caracterise par une geometrie non simple et des milieux tres differents. La technique de maillage utilisee (pas variable) permet d'approximer plus aisement les contours courbes, de repartir economiquement les points et de regulariser les discontinuites dues a deux milieux tres differents (difficulte de convergence). La technique de programmation par sous-programmes met a la disposition des ingenieurs non specialises dans le domaine numerique une methode iterative simple et sure: il suffit de passer tous les points en revue et d'appeler a chaque fois le sous-programme correspondant. (auteur)}
place = {France}
year = {1965}
month = {May}
}