You need JavaScript to view this

Bioavailability of Polycyclic Aromatic Hydrocarbons in aquatic ecosystems : influence of natural and anthropic organic matter; Biodisponibilite des hydrocarbures aromatiques polycycliques dans les ecosystemes aquatiques: influence de la matiere organique naturelle et anthropique

Abstract

Aquatic ecosystems receive micro-pollutants. They also contain organic matter (OM) of natural and anthropogenic origins. The contaminant bioavailability in aquatic media is determined by the interactions between contaminants and OM. This work deals with the influence of organic matter from anthropogenic media on the bioavailability of hydrophobic organic pollutants. Polycyclic Aromatic Hydrocarbons (PAHs) have been used as model contaminants, since they are widely spread in urban media. In anthropogenic media, some OM may be bio-degraded. Up to now, most researches focused on the interactions between contaminants and humic OM that are mostly non-degradable, using physico-chemical characterizations of OM. On the contrary, in this work, the biodegradability of OM was deliberately taken into account. Indeed, we assume that the contaminant affinity for OM evolves during OM biodegradation, so that pollutants may be released in a bio-available form and then may be bond again by biodegradation sub-products. In laboratory evaluation, PAH bioavailability was assessed through the measurements of the bioaccumulation in Daphnia magna. The influence of organic matter on the bioavailability of PAHs and the evolution of this influence along OM bacterial mineralization were proved, as well as the strong binding efficiency of degradation by-products. A model of observed phenomena was elaborated.  More>>
Authors:
Publication Date:
Nov 01, 2004
Product Type:
Thesis/Dissertation
Report Number:
FRNC-TH-5935
Reference Number:
RN06000162; TVI: 0512
Resource Relation:
Other Information: TH: These geosciences et ressources naturelles; 209 refs.
Subject:
54 ENVIRONMENTAL SCIENCES; POLYCYCLIC AROMATIC HYDROCARBONS; BIODEGRADATION; ALGAE; WATER POLLUTION; RESEARCH PROGRAMS; ORGANIC MATTER; TOXICITY
OSTI ID:
20671897
Research Organizations:
Ecole Nationale du Genie Rural, des Eaux et des Forets, 75 - Paris (France)
Country of Origin:
France
Language:
French
Other Identifying Numbers:
TRN: FR0503401
Availability:
OSTI as DE20671897; Commercial reproduction prohibited
Submitting Site:
FR
Size:
119 pages
Announcement Date:

Citation Formats

Gourlay, C. Bioavailability of Polycyclic Aromatic Hydrocarbons in aquatic ecosystems : influence of natural and anthropic organic matter; Biodisponibilite des hydrocarbures aromatiques polycycliques dans les ecosystemes aquatiques: influence de la matiere organique naturelle et anthropique. France: N. p., 2004. Web.
Gourlay, C. Bioavailability of Polycyclic Aromatic Hydrocarbons in aquatic ecosystems : influence of natural and anthropic organic matter; Biodisponibilite des hydrocarbures aromatiques polycycliques dans les ecosystemes aquatiques: influence de la matiere organique naturelle et anthropique. France.
Gourlay, C. 2004. "Bioavailability of Polycyclic Aromatic Hydrocarbons in aquatic ecosystems : influence of natural and anthropic organic matter; Biodisponibilite des hydrocarbures aromatiques polycycliques dans les ecosystemes aquatiques: influence de la matiere organique naturelle et anthropique." France.
@misc{etde_20671897,
title = {Bioavailability of Polycyclic Aromatic Hydrocarbons in aquatic ecosystems : influence of natural and anthropic organic matter; Biodisponibilite des hydrocarbures aromatiques polycycliques dans les ecosystemes aquatiques: influence de la matiere organique naturelle et anthropique}
author = {Gourlay, C}
abstractNote = {Aquatic ecosystems receive micro-pollutants. They also contain organic matter (OM) of natural and anthropogenic origins. The contaminant bioavailability in aquatic media is determined by the interactions between contaminants and OM. This work deals with the influence of organic matter from anthropogenic media on the bioavailability of hydrophobic organic pollutants. Polycyclic Aromatic Hydrocarbons (PAHs) have been used as model contaminants, since they are widely spread in urban media. In anthropogenic media, some OM may be bio-degraded. Up to now, most researches focused on the interactions between contaminants and humic OM that are mostly non-degradable, using physico-chemical characterizations of OM. On the contrary, in this work, the biodegradability of OM was deliberately taken into account. Indeed, we assume that the contaminant affinity for OM evolves during OM biodegradation, so that pollutants may be released in a bio-available form and then may be bond again by biodegradation sub-products. In laboratory evaluation, PAH bioavailability was assessed through the measurements of the bioaccumulation in Daphnia magna. The influence of organic matter on the bioavailability of PAHs and the evolution of this influence along OM bacterial mineralization were proved, as well as the strong binding efficiency of degradation by-products. A model of observed phenomena was elaborated. These observations about urban and natural OM effect were compared to in situ PAH bioavailability measurements in the river Seine basin. In this case, the bioavailability was estimated using Semi-Permeable Membrane Device (SPMD) sampling technique. (author)}
place = {France}
year = {2004}
month = {Nov}
}