You need JavaScript to view this

Fe Al40, a new canning material for reactors using refractory fuels; Le Fe Al40, un nouveau materiau de gainage pour les reacteurs a combustibles refractaires

Abstract

Fe Al40, owing to its high aluminium content, is more suitable than stainless steels for nuclear applications; it has two advantages: its nuclear cross section is half that of 18-10 stainless steels, and its compatibility with fuel elements and heat extracting fluids is exceptionally good. Ferrous alloys with more than 16 per cent by weight of aluminium are reputed to be brittle because of their ordered lattice. But actually, most of the brittleness of these alloys is due to the presence of intergranular precipitates. The vacuum casting of pure iron and aluminium, together with additions of scavenging elements, gives a very clean alloy with sufficiently reduced brittleness at high temperatures as to allow transformation with a very good yield. Studies of smelting and transformation have enabled the optimum composition and the best industrial fabrication conditions to be established. The mechanical properties of extruded or rolled products are dependent, on the ferritic ordered structure of the alloys prepared as follows: Extension at room temperature between 8 and 11 p.100, continuous increase of the elongation at rupture with increase of temperature so that at 800 C it exceeds 100 p.100; yield strength stable at 30 kg/mm{sup 2} from 20 to 550 C;  More>>
Authors:
Sainfort, G; Cabane, G; Salesse, M [1] 
  1. Commissariat a l'Energie Atomique, Saclay (France). Centre d'Etudes Nucleaires
Publication Date:
Jul 01, 1964
Product Type:
Technical Report
Report Number:
CEA-R-2663
Resource Relation:
Other Information: 2 refs
Subject:
36 MATERIALS SCIENCE; ALUMINIUM; CANNING; COMPATIBILITY; FUEL CANS; HEAT TRANSFER FLUIDS; IRON; MECHANICAL PROPERTIES; OXIDES; PHASE TRANSFORMATIONS; SMELTING
OSTI ID:
20668357
Research Organizations:
CEA Saclay, 91 - Gif-sur-Yvette (France)
Country of Origin:
France
Language:
French
Other Identifying Numbers:
TRN: FR05R2663107058
Availability:
Available from INIS in electronic form
Submitting Site:
FRN
Size:
21 pages
Announcement Date:
Dec 14, 2005

Citation Formats

Sainfort, G, Cabane, G, and Salesse, M. Fe Al40, a new canning material for reactors using refractory fuels; Le Fe Al40, un nouveau materiau de gainage pour les reacteurs a combustibles refractaires. France: N. p., 1964. Web.
Sainfort, G, Cabane, G, & Salesse, M. Fe Al40, a new canning material for reactors using refractory fuels; Le Fe Al40, un nouveau materiau de gainage pour les reacteurs a combustibles refractaires. France.
Sainfort, G, Cabane, G, and Salesse, M. 1964. "Fe Al40, a new canning material for reactors using refractory fuels; Le Fe Al40, un nouveau materiau de gainage pour les reacteurs a combustibles refractaires." France.
@misc{etde_20668357,
title = {Fe Al40, a new canning material for reactors using refractory fuels; Le Fe Al40, un nouveau materiau de gainage pour les reacteurs a combustibles refractaires}
author = {Sainfort, G, Cabane, G, and Salesse, M}
abstractNote = {Fe Al40, owing to its high aluminium content, is more suitable than stainless steels for nuclear applications; it has two advantages: its nuclear cross section is half that of 18-10 stainless steels, and its compatibility with fuel elements and heat extracting fluids is exceptionally good. Ferrous alloys with more than 16 per cent by weight of aluminium are reputed to be brittle because of their ordered lattice. But actually, most of the brittleness of these alloys is due to the presence of intergranular precipitates. The vacuum casting of pure iron and aluminium, together with additions of scavenging elements, gives a very clean alloy with sufficiently reduced brittleness at high temperatures as to allow transformation with a very good yield. Studies of smelting and transformation have enabled the optimum composition and the best industrial fabrication conditions to be established. The mechanical properties of extruded or rolled products are dependent, on the ferritic ordered structure of the alloys prepared as follows: Extension at room temperature between 8 and 11 p.100, continuous increase of the elongation at rupture with increase of temperature so that at 800 C it exceeds 100 p.100; yield strength stable at 30 kg/mm{sup 2} from 20 to 550 C; progressive decrease of impact strength as the temperature increases Creep strength at 650-700 C in the region of 10 kg/mm{sup 2} with a very high elongation because of the appearance of a fine grain recrystallization during the test. Welding of Fe Al40 is facilitated by the fact that this alloy remains ferritic up to its melting point (1350 C); however it. is sensitive to hot short cracking and grain swelling. Several welding processes have been successfully applied to this alloy, under conditions where the superficial alumina layer was removed. This very impervious oxide skin gives Fe Al 40 a unique resistance to corrosion: in carbon dioxide at 700 C, 60 atm, the weight gain after 3000 h is about one third of that of a 18-10 niobium - stabilized stainless steel, in water, either de oxygenated or saturated with oxygen at 25 C, the weight gain is one hundred time smaller than that of mild steel, after a 3 month test, in water vapour at 500 C, also after 3 months, only the growth of impervious and very adherent oxide skins is observed, in sodium up to 1000 h at 700 C, the behaviour is at least as good as that of stainless steel. No diffusion reaction has been detected either with uranium dioxide up to 800 C, or with uranium carbide up to 700 C. Extension specimens and thin walled cans are subjected to high flux irradiations between 20 and 700 C; preliminary results will be given. (authors) [French] Le Fe Al40, grace a sa haute teneur en aluminium, presente de grands avantages sur les aciers inoxydables, pour les applications nucleaires; en particulier, sa section efficace est moitie de celle de l'acier a 18 p.100 Cr et 10 p.100 Ni, et sa compatibilite avec les elements combustibles et avec les fluides caloporteurs est exceptionnellement bonne. Les alliages ferreux, contenant plus de 16 p.100 en poids d'aluminium, sont reputes fragiles en raison de leur structure ordonnee. En fait, la plus grande partie de la fragilite de ces alliages est due a la presence de precipites intergranulaires. L'emploi de fer et d'aluminium purs, ainsi que des additions destinees a pieger les traces d'impuretes residuelles, permet d'obtenir, par coulee sous vide, un alliage tres propre dont la fragilite a chaud est suffisamment reduite pour permettre une transformation. avec un excellent rendement. Les etudes de fonderie et de transformation, qui ont defini la composition de l'alliage et les meilleures conditions industrielles de preparation, seront decrites. Les proprietes mecaniques des produits files ou lamines sont conditionnees par la structure ferritique ordonnee des alliages ainsi prepares: allongement par traction a temperature ambiante compris entre 8 et 11 p.100, augmentation progressive de l'allongement de rupture quand la temperature croit de sorte qu'a 800 C il depasse 100 p.100, limite elastique de 30 kg/mm{sup 2} de 20 jusqu'a 550 C, baisse progressive de la resilience quand la temperature croit, resistance au fluage a 650-700 C de l'ordre de 10 kg/mm{sup 2} avec un allongement tres important par suite de l'apparition d'une recristallisation, en grains tres fins en cours d'essai. La soudure du Fe Al 40 est facilitee par le fait que cet alliage reste ferritique jusqu'a son point de fusion (1350 C); toutefois, il est assez sensible aux contraintes thermiques et au grossissement du grain. Plusieurs procedes de soudure ont pu etre appliques, avec succes, a cet alliage, dans les conditions ou la couche d'alumine superficielle a pu etre enlevee. Cette couche d'oxyde, tres impermeable, confere au Fe Al40 une remarquable resistance a la corrosion: dans le gaz carbonique, a 700 C sous 60 atmospheres, gain de poids au bout de 3000 h environ, 1/3 de celui d'un acier inoxydable 18-10 stabilise au niobium; dans l'eau a 25 C, desoxygenee ou saturee en oxygene gain de poids 100 fois plus faible que celui d'un acier doux au bout de 3 mois; dans la vapeur d'eau a 500 C, en 3 mois aussi, formation de couches d'oxyde tres adherentes et impermeables; dans le sodium jusqu'a 1000 h a 700 C, comportement au moins aussi bon que celui de l'acier inoxydable. Aucune reaction de diffusion n'a ete decelee ni avec l'oxyde d'uranium jusqu'a 800 C, ni avec le carbure d'uranium jusqu'a 700 C. Des eprouvettes et des gaines a parois minces sont soumises a l'irradiation dans des flux neutroniques intenses entre 20 et 700 C; les resultats preliminaires seront communiques. (auteurs)}
place = {France}
year = {1964}
month = {Jul}
}