You need JavaScript to view this

Tracing of natural radionuclides mobility in deep sedimentary environment using radioactive ({sup 234}U/{sup 238}U) disequilibria: application to the Mesozoic formations of the Eastern part of the Paris Basin; Tracage de la mobilite des radionucleides naturels en milieu sedimentaire profond a l'aide des desequilibres radioactifs ({sup 234}U/{sup 238}U): application aux formations mesozoiques de l'est du Bassin de Paris

Abstract

This thesis forms part of the geological investigations undertaken by the French agency for nuclear waste management, ANDRA, around the Meuse/Haute-Marne Underground Research Laboratory (URL) located in the Eastern part of the Paris Basin in order to evaluate the feasibility of high-level radioactive waste repository in deep argilite formations. The aim of the study is to examine the radionuclide migration in the deep Callovo-Oxfordian target argilite layer and its surrounding low- permeability Bathonian and Oxfordian limestone formations in order to assess the long term confining capacities of the sedimentary series. This study is based on measurement of radioactive disequilibria within U-series by Multiple- Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). The high precision and accuracy achieved allowed to demonstrate the {sup 234}U/{sup 238}U radioactive equilibrium in the Callovo-Oxfordian argilites. This result shows the uranium immobility in the target formation and provides a strong evidence for the current chemical stability and closure of the system for uranium and most probably for the other actinides. This is a fundamental result with respect to the problematic of disposal of high level radioactive waste in deep geological formation since it provides a in situ indication of the confining capacities of the clayey target formation  More>>
Authors:
Publication Date:
Nov 01, 2003
Product Type:
Thesis/Dissertation
Report Number:
FRNC-TH-6169
Resource Relation:
Other Information: TH: These. Specialite: sciences de la terre; [165 refs.]; PBD: Nov 2003
Subject:
58 GEOSCIENCES; ARGILLITE; CONCENTRATION RATIO; DISSOLUTION; ICP MASS SPECTROSCOPY; ISOTOPE RATIO; LIMESTONE; RADIOACTIVE WASTE DISPOSAL; RADIONUCLIDE MIGRATION; ROCK-FLUID INTERACTIONS; SEDIMENTARY BASINS; UNDERGROUND DISPOSAL; URANIUM 234; URANIUM 238
OSTI ID:
20626241
Research Organizations:
Universite Paris Sud - Paris XI, 15 rue Georges Clemenceau 91405 Orsay Cedex (France); Universite du Quebec, Chicoutimi (Canada)
Country of Origin:
France
Language:
French; English
Other Identifying Numbers:
TRN: FR0503083069372
Availability:
Available from INIS in electronic form
Submitting Site:
FRN
Size:
387 pages
Announcement Date:
Aug 28, 2005

Citation Formats

Deschamps, P. Tracing of natural radionuclides mobility in deep sedimentary environment using radioactive ({sup 234}U/{sup 238}U) disequilibria: application to the Mesozoic formations of the Eastern part of the Paris Basin; Tracage de la mobilite des radionucleides naturels en milieu sedimentaire profond a l'aide des desequilibres radioactifs ({sup 234}U/{sup 238}U): application aux formations mesozoiques de l'est du Bassin de Paris. France: N. p., 2003. Web.
Deschamps, P. Tracing of natural radionuclides mobility in deep sedimentary environment using radioactive ({sup 234}U/{sup 238}U) disequilibria: application to the Mesozoic formations of the Eastern part of the Paris Basin; Tracage de la mobilite des radionucleides naturels en milieu sedimentaire profond a l'aide des desequilibres radioactifs ({sup 234}U/{sup 238}U): application aux formations mesozoiques de l'est du Bassin de Paris. France.
Deschamps, P. 2003. "Tracing of natural radionuclides mobility in deep sedimentary environment using radioactive ({sup 234}U/{sup 238}U) disequilibria: application to the Mesozoic formations of the Eastern part of the Paris Basin; Tracage de la mobilite des radionucleides naturels en milieu sedimentaire profond a l'aide des desequilibres radioactifs ({sup 234}U/{sup 238}U): application aux formations mesozoiques de l'est du Bassin de Paris." France.
@misc{etde_20626241,
title = {Tracing of natural radionuclides mobility in deep sedimentary environment using radioactive ({sup 234}U/{sup 238}U) disequilibria: application to the Mesozoic formations of the Eastern part of the Paris Basin; Tracage de la mobilite des radionucleides naturels en milieu sedimentaire profond a l'aide des desequilibres radioactifs ({sup 234}U/{sup 238}U): application aux formations mesozoiques de l'est du Bassin de Paris}
author = {Deschamps, P}
abstractNote = {This thesis forms part of the geological investigations undertaken by the French agency for nuclear waste management, ANDRA, around the Meuse/Haute-Marne Underground Research Laboratory (URL) located in the Eastern part of the Paris Basin in order to evaluate the feasibility of high-level radioactive waste repository in deep argilite formations. The aim of the study is to examine the radionuclide migration in the deep Callovo-Oxfordian target argilite layer and its surrounding low- permeability Bathonian and Oxfordian limestone formations in order to assess the long term confining capacities of the sedimentary series. This study is based on measurement of radioactive disequilibria within U-series by Multiple- Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). The high precision and accuracy achieved allowed to demonstrate the {sup 234}U/{sup 238}U radioactive equilibrium in the Callovo-Oxfordian argilites. This result shows the uranium immobility in the target formation and provides a strong evidence for the current chemical stability and closure of the system for uranium and most probably for the other actinides. This is a fundamental result with respect to the problematic of disposal of high level radioactive waste in deep geological formation since it provides a in situ indication of the confining capacities of the clayey target formation in the current settings. Conversely, ({sup 234}U/{sup 238}U) disequilibria are systematically observed within zones, located in the surrounding carbonate formations, that are characterized by pressure dissolution structures (stylolites or dissolution seams). These disequilibria provide evidence for a discrete uranium relocation during the last two million years in the vicinity of stylolitic structures. This is a surprising result since it is generally supposed that these deep, low permeability, compact formations behave as closed system at the time scale of the U-series. (author)}
place = {France}
year = {2003}
month = {Nov}
}