You need JavaScript to view this

Space synthesis: an application of synthesis method to two and three dimensional multigroup neutron diffusion equations; Synthese spatiale: une application de la methode de synthese aux equations de diffusion neutronique multigroupe a deux et trois dimensions

Abstract

In order to reduce computing time, two and three-dimensional multigroup neutron diffusion equations in cylindrical, rectangular (X, Y), (X, Y, Z) and hexagonal geometries are solved by the method of synthesis using an appropriate variational principle (stationary principle). The basic idea is to reduce the number of independent variables by constructing two or three-dimensional solutions from solutions of fewer variables, hence the name 'synthesis method'. Whatever the geometry, we are led to solve a system of ordinary differential equations with matrix coefficients to which one can apply well-known numerical methods: CHEBYSHEV's polynomial method, Gaussian elimination. Numerical results furnished by synthesis programs written for the IBM 7094, the IBM 360-75 and the CDC 6600 computers, are confronted with those which are given by programs employing the classical finite difference method. [French] En vue de reduire le-temps de calcul, les equations de diffusion neutronique, multigroupe, a deux et trois dimensions d'espace dans les geometries cylindrique, rectangulaire (X, Y), (X, Y, Z) et hexagonale sont resolues par la methode de synthese utilisant un principe variationnel approprie (principe stationnaire). L'idee consiste a reduire le nombre de variables independantes par construction d'une solution bi ou tridimensionnelle au moyen de solutions dependant d'un nombre inferieur de  More>>
Authors:
Nguyen-Ngoc, H [1] 
  1. Commissariat a l'Energie Atomique, Saclay (France). Centre d'Etudes Nucleaires
Publication Date:
Jul 01, 1969
Product Type:
Technical Report
Report Number:
CEA-R-3713
Resource Relation:
Other Information: PBD: 1969
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; COMPUTER CODES; CYLINDRICAL CONFIGURATION; HEXAGONAL CONFIGURATION; MULTIGROUP THEORY; NEUTRON DIFFUSION EQUATION; NEUTRON TRANSPORT THEORY; RECTANGULAR CONFIGURATION
OSTI ID:
20547212
Research Organizations:
CEA Saclay, 91 - Gif-sur-Yvette (France)
Country of Origin:
France
Language:
French
Other Identifying Numbers:
TRN: FR04R3713002819
Availability:
Available from INIS in electronic form
Submitting Site:
FRN
Size:
[68] pages
Announcement Date:
Feb 01, 2005

Citation Formats

Nguyen-Ngoc, H. Space synthesis: an application of synthesis method to two and three dimensional multigroup neutron diffusion equations; Synthese spatiale: une application de la methode de synthese aux equations de diffusion neutronique multigroupe a deux et trois dimensions. France: N. p., 1969. Web.
Nguyen-Ngoc, H. Space synthesis: an application of synthesis method to two and three dimensional multigroup neutron diffusion equations; Synthese spatiale: une application de la methode de synthese aux equations de diffusion neutronique multigroupe a deux et trois dimensions. France.
Nguyen-Ngoc, H. 1969. "Space synthesis: an application of synthesis method to two and three dimensional multigroup neutron diffusion equations; Synthese spatiale: une application de la methode de synthese aux equations de diffusion neutronique multigroupe a deux et trois dimensions." France.
@misc{etde_20547212,
title = {Space synthesis: an application of synthesis method to two and three dimensional multigroup neutron diffusion equations; Synthese spatiale: une application de la methode de synthese aux equations de diffusion neutronique multigroupe a deux et trois dimensions}
author = {Nguyen-Ngoc, H}
abstractNote = {In order to reduce computing time, two and three-dimensional multigroup neutron diffusion equations in cylindrical, rectangular (X, Y), (X, Y, Z) and hexagonal geometries are solved by the method of synthesis using an appropriate variational principle (stationary principle). The basic idea is to reduce the number of independent variables by constructing two or three-dimensional solutions from solutions of fewer variables, hence the name 'synthesis method'. Whatever the geometry, we are led to solve a system of ordinary differential equations with matrix coefficients to which one can apply well-known numerical methods: CHEBYSHEV's polynomial method, Gaussian elimination. Numerical results furnished by synthesis programs written for the IBM 7094, the IBM 360-75 and the CDC 6600 computers, are confronted with those which are given by programs employing the classical finite difference method. [French] En vue de reduire le-temps de calcul, les equations de diffusion neutronique, multigroupe, a deux et trois dimensions d'espace dans les geometries cylindrique, rectangulaire (X, Y), (X, Y, Z) et hexagonale sont resolues par la methode de synthese utilisant un principe variationnel approprie (principe stationnaire). L'idee consiste a reduire le nombre de variables independantes par construction d'une solution bi ou tridimensionnelle au moyen de solutions dependant d'un nombre inferieur de variables, d'ou le nom de la methode. Dans tous les cas de geometrie, nous sommes conduits a resoudre un systeme d'equations differentielles a coefficients matriciels auquel peuvent s'appliquer les methodes numeriques courantes; methode polynomiale de TCHEBYCHEFF et methode d'elimination de GAUSS. Les resultats numeriques obtenus par nos codes de synthese programmes sur IBM 7094, IBM 360-75 et CDC 6600, sont confrontes avec ceux que fournissent les programmes adoptant la methode classique des differences finies. (auteur)}
place = {France}
year = {1969}
month = {Jul}
}