You need JavaScript to view this

FY 2000 Project of developing international standards for supporting new industries. Standardization of the fine bioceramics testing/evaluation methods; 2000 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Seitaiyo fine ceramics no shiken hyoka hoho no hyojunka

Abstract

Described herein are the FY 2000 results of the research and development of the fatigue characteristics of the bioceramics, fatigue and impact-resistance characteristics of the members of these materials, and methods of evaluating their compatibility with a living body, for proposing the international standards. The test results of alumina and zirconia as the bioceramics indicate that their bending fatigue characteristics greatly depend on environmental conditions and frequency, suggesting necessity for the evaluation in the environments which simulate the living body inside. The compression and impact tests are conducted for the artificial femoral heads with a taper. It is found that the simulated body fluid, having the dissociated ion concentration adjusted at the level in the human blood plasma, remains unchanged in the concentration at 36.5 degrees C for 4 weeks; the ion concentration is unaffected by filtration with the aid of the microfilter useful for, e.g., removal of bacteria; and the synthetic apatite has almost the same composition as that for the bones in a living body. It is also suggested that activity of the bioactive ceramics can be evaluated by their ability for forming apatite in the simulated body fluid. (NEDO)
Publication Date:
Mar 01, 2001
Product Type:
Technical Report
Report Number:
JP-NEDO-010019172
Resource Relation:
Other Information: PBD: Mar 2001
Subject:
36 MATERIALS SCIENCE; ISO; STANDARDIZATION; BIOTECHNOLOGY; CERAMICS; FATIGUE; IMPACT SHOCK; ZIRCONIUM OXIDES; ALUMINIUM OXIDES; BONE JOINTS; COMPRESSION STRENGTH; BLOOD SERUM; FILTRATION; APATITES
OSTI ID:
20237550
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
TRN: JN0141564
Availability:
Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20237550
Submitting Site:
NEDO
Size:
216 pages
Announcement Date:

Citation Formats

FY 2000 Project of developing international standards for supporting new industries. Standardization of the fine bioceramics testing/evaluation methods; 2000 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Seitaiyo fine ceramics no shiken hyoka hoho no hyojunka. Japan: N. p., 2001. Web.
FY 2000 Project of developing international standards for supporting new industries. Standardization of the fine bioceramics testing/evaluation methods; 2000 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Seitaiyo fine ceramics no shiken hyoka hoho no hyojunka. Japan.
2001. "FY 2000 Project of developing international standards for supporting new industries. Standardization of the fine bioceramics testing/evaluation methods; 2000 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Seitaiyo fine ceramics no shiken hyoka hoho no hyojunka." Japan.
@misc{etde_20237550,
title = {FY 2000 Project of developing international standards for supporting new industries. Standardization of the fine bioceramics testing/evaluation methods; 2000 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Seitaiyo fine ceramics no shiken hyoka hoho no hyojunka}
abstractNote = {Described herein are the FY 2000 results of the research and development of the fatigue characteristics of the bioceramics, fatigue and impact-resistance characteristics of the members of these materials, and methods of evaluating their compatibility with a living body, for proposing the international standards. The test results of alumina and zirconia as the bioceramics indicate that their bending fatigue characteristics greatly depend on environmental conditions and frequency, suggesting necessity for the evaluation in the environments which simulate the living body inside. The compression and impact tests are conducted for the artificial femoral heads with a taper. It is found that the simulated body fluid, having the dissociated ion concentration adjusted at the level in the human blood plasma, remains unchanged in the concentration at 36.5 degrees C for 4 weeks; the ion concentration is unaffected by filtration with the aid of the microfilter useful for, e.g., removal of bacteria; and the synthetic apatite has almost the same composition as that for the bones in a living body. It is also suggested that activity of the bioactive ceramics can be evaluated by their ability for forming apatite in the simulated body fluid. (NEDO)}
place = {Japan}
year = {2001}
month = {Mar}
}