You need JavaScript to view this

Investigation of the temporal development of the stratospheric ozone layer with an interactively coupled chemistry-climate model; Untersuchung der zeitlichen Entwicklung der stratosphaerischen Ozonschicht mit einem interaktiv gekoppelten Klima-Chemie-Modell

Abstract

The impact of climate change and stratospheric chlorine loading on the stratospheric ozone layer is estimated by evaluating three multi-annual simulations of the interactively coupled global chemistry-climate model ECUAM4.L39 (DLR)/CHEM. Two experiments of the near past were carried out representing the early 1980s and 1990s, respectively. An additional scenario was conducted which is characterised by increased greenhouse gas concentrations and a slightly reduced stratospheric chlorine loading with respect to its value measured in the year 1990, according to current projections. The model is able to describe dynamic and chemical processes of the 1980s and 1990s realistically, and it is capable in reproducing the observed stratospheric temperature, water vapour, and ozone temperature trends of this time period. With increasing greenhouse gas concentrations, the model produces an enhancing stratospheric cooling for the years 1980 to 2015. Despite the reduced stratospheric chlorine loading in 2015, the decreased stratospheric temperatures will cause a continued reduction of stratospheric ozone in the southern hemisphere. In the northern hemisphere, tropospheric warming results in a changed excitation of planetary waves. Their vertical propagation and breaking in the stratosphere causes the polar vortex to become more unstable in 2015. This overcompensates the radiative stratospheric cooling so that stratospheric ozone  More>>
Authors:
Publication Date:
Jul 01, 2001
Product Type:
Thesis/Dissertation
Report Number:
DLR-FB-2001-19
Resource Relation:
Other Information: TH: Diss.; PBD: 2001
Subject:
54 ENVIRONMENTAL SCIENCES; ATMOSPHERIC CHEMISTRY; OZONE; STRATOSPHERE; CLIMATE MODELS; GREENHOUSE EFFECT; TEMPERATURE DISTRIBUTION; POLAR REGIONS; VORTICES; ATMOSPHERIC CIRCULATION; WATER VAPOR
OSTI ID:
20235926
Research Organizations:
DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Muenchen Univ. (Germany). Fakultaet fuer Physik
Country of Origin:
Germany
Language:
German
Other Identifying Numbers:
Other: ISSN 1434-8454; TRN: DE02G3162
Availability:
Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20235926
Submitting Site:
DE
Size:
188 pages
Announcement Date:
Apr 17, 2002

Citation Formats

Schnadt, C. Investigation of the temporal development of the stratospheric ozone layer with an interactively coupled chemistry-climate model; Untersuchung der zeitlichen Entwicklung der stratosphaerischen Ozonschicht mit einem interaktiv gekoppelten Klima-Chemie-Modell. Germany: N. p., 2001. Web.
Schnadt, C. Investigation of the temporal development of the stratospheric ozone layer with an interactively coupled chemistry-climate model; Untersuchung der zeitlichen Entwicklung der stratosphaerischen Ozonschicht mit einem interaktiv gekoppelten Klima-Chemie-Modell. Germany.
Schnadt, C. 2001. "Investigation of the temporal development of the stratospheric ozone layer with an interactively coupled chemistry-climate model; Untersuchung der zeitlichen Entwicklung der stratosphaerischen Ozonschicht mit einem interaktiv gekoppelten Klima-Chemie-Modell." Germany.
@misc{etde_20235926,
title = {Investigation of the temporal development of the stratospheric ozone layer with an interactively coupled chemistry-climate model; Untersuchung der zeitlichen Entwicklung der stratosphaerischen Ozonschicht mit einem interaktiv gekoppelten Klima-Chemie-Modell}
author = {Schnadt, C}
abstractNote = {The impact of climate change and stratospheric chlorine loading on the stratospheric ozone layer is estimated by evaluating three multi-annual simulations of the interactively coupled global chemistry-climate model ECUAM4.L39 (DLR)/CHEM. Two experiments of the near past were carried out representing the early 1980s and 1990s, respectively. An additional scenario was conducted which is characterised by increased greenhouse gas concentrations and a slightly reduced stratospheric chlorine loading with respect to its value measured in the year 1990, according to current projections. The model is able to describe dynamic and chemical processes of the 1980s and 1990s realistically, and it is capable in reproducing the observed stratospheric temperature, water vapour, and ozone temperature trends of this time period. With increasing greenhouse gas concentrations, the model produces an enhancing stratospheric cooling for the years 1980 to 2015. Despite the reduced stratospheric chlorine loading in 2015, the decreased stratospheric temperatures will cause a continued reduction of stratospheric ozone in the southern hemisphere. In the northern hemisphere, tropospheric warming results in a changed excitation of planetary waves. Their vertical propagation and breaking in the stratosphere causes the polar vortex to become more unstable in 2015. This overcompensates the radiative stratospheric cooling so that stratospheric ozone recovers. (orig.)}
place = {Germany}
year = {2001}
month = {Jul}
}