You need JavaScript to view this

Fiscal 2000 report on the Phase II R and D of the international hydrogen utilization clean energy network system technology (WE-NET). Task 8. Development of hydrogen production technology; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu seika hokokusho. 8. Suiso seizo gijutsu no kaihatsu

Abstract

Research and development was carried out to establish a hydrogen production technology in the electrolysis of water using the solid macromolecular electrolyte method expected to be more efficient and less costly than the conventional hydrogen production methods. In the development of large area electrolysis cell lamination, a lamination comprising ten 2,500cm{sup 2} cells was fabricated, and a value exceeding the target energy efficiency of 90% was achieved. In the fabrication of stacks for hydrogen service stations, a lamination of ten cell stacks of 1,000cm{sup 2} was built, which achieved energy efficiency of not less than 90% at the an electrolysis temperature of 100 degrees C. A hydrogen production plant conceptual design was prepared under the conditions of hydrogen generation amount: 10,000Nm{sup 3}/h, electrode area: 10,000cm{sup 2}/cell, current density: 2.5A/cm{sup 2}, operating temperature: 120 degrees C, cell voltage: 1.705V, total number of cells: 976, stack constitution: 122/stack, and the number of stacks: 8. The result of studies placed the plant construction cost at 2.18-billion yen including building and civil engineering costs, and the hydrogen production unit cost at 28.4 yen/Nm{sup 3}. (NEDO)
Publication Date:
Mar 01, 2001
Product Type:
Technical Report
Report Number:
JP-NEDO-010018933
Resource Relation:
Other Information: PBD: Mar 2001
Subject:
08 HYDROGEN; HYDROGEN FUEL CELLS; HYDROGEN FUELS; HYDROGEN GENERATORS; HYDROGEN PRODUCTION; COST; ENERGY EFFICIENCY; SOLID OXIDE FUEL CELLS; HYDROLYSIS; STACKS; ELECTRODES; CURRENT DENSITY
OSTI ID:
20232918
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
TRN: JN0141234
Availability:
Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20232918
Submitting Site:
NEDO
Size:
234 pages
Announcement Date:

Citation Formats

Fiscal 2000 report on the Phase II R and D of the international hydrogen utilization clean energy network system technology (WE-NET). Task 8. Development of hydrogen production technology; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu seika hokokusho. 8. Suiso seizo gijutsu no kaihatsu. Japan: N. p., 2001. Web.
Fiscal 2000 report on the Phase II R and D of the international hydrogen utilization clean energy network system technology (WE-NET). Task 8. Development of hydrogen production technology; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu seika hokokusho. 8. Suiso seizo gijutsu no kaihatsu. Japan.
2001. "Fiscal 2000 report on the Phase II R and D of the international hydrogen utilization clean energy network system technology (WE-NET). Task 8. Development of hydrogen production technology; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu seika hokokusho. 8. Suiso seizo gijutsu no kaihatsu." Japan.
@misc{etde_20232918,
title = {Fiscal 2000 report on the Phase II R and D of the international hydrogen utilization clean energy network system technology (WE-NET). Task 8. Development of hydrogen production technology; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu seika hokokusho. 8. Suiso seizo gijutsu no kaihatsu}
abstractNote = {Research and development was carried out to establish a hydrogen production technology in the electrolysis of water using the solid macromolecular electrolyte method expected to be more efficient and less costly than the conventional hydrogen production methods. In the development of large area electrolysis cell lamination, a lamination comprising ten 2,500cm{sup 2} cells was fabricated, and a value exceeding the target energy efficiency of 90% was achieved. In the fabrication of stacks for hydrogen service stations, a lamination of ten cell stacks of 1,000cm{sup 2} was built, which achieved energy efficiency of not less than 90% at the an electrolysis temperature of 100 degrees C. A hydrogen production plant conceptual design was prepared under the conditions of hydrogen generation amount: 10,000Nm{sup 3}/h, electrode area: 10,000cm{sup 2}/cell, current density: 2.5A/cm{sup 2}, operating temperature: 120 degrees C, cell voltage: 1.705V, total number of cells: 976, stack constitution: 122/stack, and the number of stacks: 8. The result of studies placed the plant construction cost at 2.18-billion yen including building and civil engineering costs, and the hydrogen production unit cost at 28.4 yen/Nm{sup 3}. (NEDO)}
place = {Japan}
year = {2001}
month = {Mar}
}