You need JavaScript to view this

FY 2000 report on the results of the R and D of fundamental technologies for semi conductivity applications; 2000 nendo chodendo oyo kiban gijutsu kenkyu kaihatsu seika hokokusho

Abstract

In relation to the project on the R and D of fundamental technologies for semi conductivity applications, the FY 2000 results were summed up. As to the study of the high temperature superconductivity mechanism, it was found out that a theoretical model of the strong scattering limit in d-wave superconductor can be used for the breaking of superconductivity due to Zn impurities. Concerning the study of the critical current mechanism, the elucidation was proceeded with of the magnetic flux pinning and grain-boundary conduction mechanism. Relating to the development of element technology of bulks with great electromagnetic force, the mechanical strength of superconducting bulk materials was raised to 100MPa or more by the epoxy resin impregnation method. As to the development of the basic technology for fabrication of high next-generation current conductors, the expansion was confirmed of conditions for growing single grains in the zone-melt process for very fine filaments. About the development of technology of single crystal substrates, in the development of the pseudo single crystalline film growth process by LPE method, a yield ratio of high quality crystal of 63% was achieved. Concerning the development of technology of thin film/multi-layer, the area of uniform composition/thickness of NdBa{sub 2}Cu{sub 3}O{sub  More>>
Publication Date:
May 01, 2001
Product Type:
Technical Report
Report Number:
JP-NEDO-010017149
Resource Relation:
Other Information: PBD: May 2001
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; SUPERCONDUCTORS; SUPERCONDUCTIVITY; IMPURITIES; ZINC; CRITICAL CURRENT; DISLOCATION PINNING; MAGNETIC FLUX; ELECTRIC CONDUCTORS; MECHANICAL PROPERTIES; ZONE MELTING; MONOCRYSTALS; SUBSTRATES; THIN FILMS
OSTI ID:
20202812
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
TRN: JN0140515
Availability:
Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20202812
Submitting Site:
NEDO
Size:
[900] pages
Announcement Date:
Jun 11, 2002

Citation Formats

None. FY 2000 report on the results of the R and D of fundamental technologies for semi conductivity applications; 2000 nendo chodendo oyo kiban gijutsu kenkyu kaihatsu seika hokokusho. Japan: N. p., 2001. Web.
None. FY 2000 report on the results of the R and D of fundamental technologies for semi conductivity applications; 2000 nendo chodendo oyo kiban gijutsu kenkyu kaihatsu seika hokokusho. Japan.
None. 2001. "FY 2000 report on the results of the R and D of fundamental technologies for semi conductivity applications; 2000 nendo chodendo oyo kiban gijutsu kenkyu kaihatsu seika hokokusho." Japan.
@misc{etde_20202812,
title = {FY 2000 report on the results of the R and D of fundamental technologies for semi conductivity applications; 2000 nendo chodendo oyo kiban gijutsu kenkyu kaihatsu seika hokokusho}
author = {None}
abstractNote = {In relation to the project on the R and D of fundamental technologies for semi conductivity applications, the FY 2000 results were summed up. As to the study of the high temperature superconductivity mechanism, it was found out that a theoretical model of the strong scattering limit in d-wave superconductor can be used for the breaking of superconductivity due to Zn impurities. Concerning the study of the critical current mechanism, the elucidation was proceeded with of the magnetic flux pinning and grain-boundary conduction mechanism. Relating to the development of element technology of bulks with great electromagnetic force, the mechanical strength of superconducting bulk materials was raised to 100MPa or more by the epoxy resin impregnation method. As to the development of the basic technology for fabrication of high next-generation current conductors, the expansion was confirmed of conditions for growing single grains in the zone-melt process for very fine filaments. About the development of technology of single crystal substrates, in the development of the pseudo single crystalline film growth process by LPE method, a yield ratio of high quality crystal of 63% was achieved. Concerning the development of technology of thin film/multi-layer, the area of uniform composition/thickness of NdBa{sub 2}Cu{sub 3}O{sub 7-x} MOCVD films was enlarged up to 20mm square. (NEDO)}
place = {Japan}
year = {2001}
month = {May}
}