You need JavaScript to view this

Fiscal 1992 survey report of R and D on new forming technology of composite material. Development of innovative technology for producing members for high efficiency power generation; 1992 nendo fukugo zairyo seikei gijutsu chosa hokokusho. Fukugo zairyo shinseikei gijutsu no kenkyu kaihatsu (kokoritsu hatsuden'yo buzai soseigijutsu kaihatsu)

Abstract

Composite forming technology is being developed which is intended to manifest superplasticity phenomenon of ceramic matrix and metallic matrix composite materials; also being developed is an effective efficient superplastic processing technology which utilizes this composite forming technology. The related technologies were investigated comprehensively systematically with the purpose of promoting the development. First, an overview was given in the present state and problems of ceramic matrix/metallic matrix composite technologies and in the forefront of the superplasticity research of ceramic matrix materials, and then, the related technologies of these composite materials were pigeonholed under the following items: 1. assesment/strength/dynamic properties, 2. composite process and property, 3. composite forming process, 4. superplasticity, 5. process and superplasticity, and 6. others. The titles of the rearranged summary documents are, for example, surface modification and casting of SiC platelets in Al{sub 2}O{sub 3} composites, deformation of Al{sub 2}O{sub 3}/TiC composites at elevated temperatures, superplastic bulging of fine-grained zirconia, forging of short alumina fiber reinforced aluminum alloy, and on superplasticity in silicon carbide reinforced aluminum composites. (NEDO)
Authors:
"NONE"
Publication Date:
Mar 01, 1993
Product Type:
Technical Report
Report Number:
JP-NEDO-010015478
Resource Relation:
Other Information: PBD: Mar 1993
Subject:
36 MATERIALS SCIENCE; COMPOSITE MATERIALS; CERAMICS; METALS; WHISKERS; FIBERS; MOLDING; PLASTICITY; FRACTURE PROPERTIES; POWDER METALLURGY; SINTERING; ALUMINIUM ALLOYS; ALUMINIUM OXIDES; HEAT RESISTANT MATERIALS; MATERIALS WORKING
OSTI ID:
20175179
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
TRN: JN0140079
Availability:
Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20175179
Submitting Site:
NEDO
Size:
123 pages
Announcement Date:

Citation Formats

Fiscal 1992 survey report of R and D on new forming technology of composite material. Development of innovative technology for producing members for high efficiency power generation; 1992 nendo fukugo zairyo seikei gijutsu chosa hokokusho. Fukugo zairyo shinseikei gijutsu no kenkyu kaihatsu (kokoritsu hatsuden'yo buzai soseigijutsu kaihatsu). Japan: N. p., 1993. Web.
Fiscal 1992 survey report of R and D on new forming technology of composite material. Development of innovative technology for producing members for high efficiency power generation; 1992 nendo fukugo zairyo seikei gijutsu chosa hokokusho. Fukugo zairyo shinseikei gijutsu no kenkyu kaihatsu (kokoritsu hatsuden'yo buzai soseigijutsu kaihatsu). Japan.
1993. "Fiscal 1992 survey report of R and D on new forming technology of composite material. Development of innovative technology for producing members for high efficiency power generation; 1992 nendo fukugo zairyo seikei gijutsu chosa hokokusho. Fukugo zairyo shinseikei gijutsu no kenkyu kaihatsu (kokoritsu hatsuden'yo buzai soseigijutsu kaihatsu)." Japan.
@misc{etde_20175179,
title = {Fiscal 1992 survey report of R and D on new forming technology of composite material. Development of innovative technology for producing members for high efficiency power generation; 1992 nendo fukugo zairyo seikei gijutsu chosa hokokusho. Fukugo zairyo shinseikei gijutsu no kenkyu kaihatsu (kokoritsu hatsuden'yo buzai soseigijutsu kaihatsu)}
abstractNote = {Composite forming technology is being developed which is intended to manifest superplasticity phenomenon of ceramic matrix and metallic matrix composite materials; also being developed is an effective efficient superplastic processing technology which utilizes this composite forming technology. The related technologies were investigated comprehensively systematically with the purpose of promoting the development. First, an overview was given in the present state and problems of ceramic matrix/metallic matrix composite technologies and in the forefront of the superplasticity research of ceramic matrix materials, and then, the related technologies of these composite materials were pigeonholed under the following items: 1. assesment/strength/dynamic properties, 2. composite process and property, 3. composite forming process, 4. superplasticity, 5. process and superplasticity, and 6. others. The titles of the rearranged summary documents are, for example, surface modification and casting of SiC platelets in Al{sub 2}O{sub 3} composites, deformation of Al{sub 2}O{sub 3}/TiC composites at elevated temperatures, superplastic bulging of fine-grained zirconia, forging of short alumina fiber reinforced aluminum alloy, and on superplasticity in silicon carbide reinforced aluminum composites. (NEDO)}
place = {Japan}
year = {1993}
month = {Mar}
}