You need JavaScript to view this

Fiscal 1994 report on results of R and D on new forming technology of composite materials. Development of innovative technology for producing members for high efficiency power generation; 1994 nendo fukugo zairyo shinseikei gijutsu no kenkyu kaihatsu seika hokokusho. Kokoritsu hatsuden buzai sosei gijutsu kaihatsu

Abstract

Activities were conducted in the three areas of (1) R and D on ceramic matrix composite forming technology, (2) R and D on metallic matrix composite forming technology, and (3) comprehensive investigation and adjustment, for the purpose of developing materials that manifest superplasticity among ceramic and metallic matrix composites as well as developing the forming and fabrication technology and also of improving productivity by simplifying the fabrication processes. In (1), upon discovering that the superplastic properties of zirconia (3Y-ZrO{sub 2}) sold in the market is affected by the grain size and impurities (Al{sub 2}O{sub 3}) of the material, a zirconia was developed in which a trace of Al{sub 2}O{sub 3} and SiO{sub 2} were added, with a method detected capable of the fabrication through a low deforming stress. In (2), development was carried forward for a new high specific strength high-temperature material applicable to aircraft engines for example, as well as its forming and fabrication technology, by making a composite between metals and between metal and ceramics by a mechanical alloying (MA) method. Metalcarbide, nitride and oxide made by the MA method were sintered by hot press or the like, and a sintered material was thereby obtained that was superplastic  More>>
Publication Date:
Mar 01, 1995
Product Type:
Technical Report
Report Number:
JP-NEDO-010015439
Resource Relation:
Other Information: PBD: Mar 1995
Subject:
36 MATERIALS SCIENCE; COMPOSITE MATERIALS; CERAMICS; METALS; PLASTICITY; MOLDING; MATERIALS WORKING; ZIRCONIUM OXIDES; TITANIUM; CARBIDES; NITRIDES; ALUMINIUM; HEAT RESISTANT MATERIALS
OSTI ID:
20175161
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
TRN: JN0140061
Availability:
Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20175161
Submitting Site:
NEDO
Size:
122 pages
Announcement Date:
May 29, 2002

Citation Formats

None. Fiscal 1994 report on results of R and D on new forming technology of composite materials. Development of innovative technology for producing members for high efficiency power generation; 1994 nendo fukugo zairyo shinseikei gijutsu no kenkyu kaihatsu seika hokokusho. Kokoritsu hatsuden buzai sosei gijutsu kaihatsu. Japan: N. p., 1995. Web.
None. Fiscal 1994 report on results of R and D on new forming technology of composite materials. Development of innovative technology for producing members for high efficiency power generation; 1994 nendo fukugo zairyo shinseikei gijutsu no kenkyu kaihatsu seika hokokusho. Kokoritsu hatsuden buzai sosei gijutsu kaihatsu. Japan.
None. 1995. "Fiscal 1994 report on results of R and D on new forming technology of composite materials. Development of innovative technology for producing members for high efficiency power generation; 1994 nendo fukugo zairyo shinseikei gijutsu no kenkyu kaihatsu seika hokokusho. Kokoritsu hatsuden buzai sosei gijutsu kaihatsu." Japan.
@misc{etde_20175161,
title = {Fiscal 1994 report on results of R and D on new forming technology of composite materials. Development of innovative technology for producing members for high efficiency power generation; 1994 nendo fukugo zairyo shinseikei gijutsu no kenkyu kaihatsu seika hokokusho. Kokoritsu hatsuden buzai sosei gijutsu kaihatsu}
author = {None}
abstractNote = {Activities were conducted in the three areas of (1) R and D on ceramic matrix composite forming technology, (2) R and D on metallic matrix composite forming technology, and (3) comprehensive investigation and adjustment, for the purpose of developing materials that manifest superplasticity among ceramic and metallic matrix composites as well as developing the forming and fabrication technology and also of improving productivity by simplifying the fabrication processes. In (1), upon discovering that the superplastic properties of zirconia (3Y-ZrO{sub 2}) sold in the market is affected by the grain size and impurities (Al{sub 2}O{sub 3}) of the material, a zirconia was developed in which a trace of Al{sub 2}O{sub 3} and SiO{sub 2} were added, with a method detected capable of the fabrication through a low deforming stress. In (2), development was carried forward for a new high specific strength high-temperature material applicable to aircraft engines for example, as well as its forming and fabrication technology, by making a composite between metals and between metal and ceramics by a mechanical alloying (MA) method. Metalcarbide, nitride and oxide made by the MA method were sintered by hot press or the like, and a sintered material was thereby obtained that was superplastic and capable of the near net-shape forming. (NEDO)}
place = {Japan}
year = {1995}
month = {Mar}
}