You need JavaScript to view this

Report for fiscal 1981 on comprehensive survey for nationwide geothermal resources. Survey on radar imaging method - geothermal analysis conception design (Appendix); 1981 nendo zenkoku chinetsu shigen sogo chosa hokokusho. Radar eizoho chosa (chinetsu kaiseki gainen sekkei furoku)

Abstract

This paper explains different theoretical calculation methods used in gravity and magnetic force data analysis in geothermal resources survey. Analyzing the gravity data and the magnetic force data is capable of being applied with the potential theory. The increased speed and capacity of recent computers make easier the conversion of data into wave number zone. In relation with heavy magnetic force analysis, the paper explains such items as basic handling, IGRF remainder calculation, methods for topographic correction, conversion of primary and secondary polar magnetism and conversion of pseudo-gravity, coherent analysis, spectral ratio method, estimation of spectra by using MEM, spectrum moment method, heavy magnetic force simultaneously analyzing type modeling, constraint inversion method, and other methods. The paper further explains the sequential approximation method in magnetization calculation, methods for calculating equivalent magnetization distribution (methods by Bhattacharyya and Chan, and Nakatsuka), method for calculating equivalent magnetization distribution (method by O'Brien), primary and secondary polar magnetism conversion relation formulas, and theoretical calculation of spectral ratio. (NEDO)
Publication Date:
Oct 01, 1982
Product Type:
Technical Report
Report Number:
JP-NEDO-010014810
Resource Relation:
Other Information: PBD: Oct 1982
Subject:
15 GEOTHERMAL ENERGY; GEOTHERMAL RESOURCES; GEOPHYSICAL SURVEYS; OPTICAL RADAR; IMAGE PROCESSING; GRAVITY SURVEYS; MAGNETIC SURVEYS; COMPUTER CALCULATIONS; TOPOGRAPHY; CALCULATION METHODS; ITERATIVE METHODS
OSTI ID:
20163331
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
TRN: JN0042266
Availability:
Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20163331
Submitting Site:
NEDO
Size:
99 pages
Announcement Date:
May 29, 2002

Citation Formats

None. Report for fiscal 1981 on comprehensive survey for nationwide geothermal resources. Survey on radar imaging method - geothermal analysis conception design (Appendix); 1981 nendo zenkoku chinetsu shigen sogo chosa hokokusho. Radar eizoho chosa (chinetsu kaiseki gainen sekkei furoku). Japan: N. p., 1982. Web.
None. Report for fiscal 1981 on comprehensive survey for nationwide geothermal resources. Survey on radar imaging method - geothermal analysis conception design (Appendix); 1981 nendo zenkoku chinetsu shigen sogo chosa hokokusho. Radar eizoho chosa (chinetsu kaiseki gainen sekkei furoku). Japan.
None. 1982. "Report for fiscal 1981 on comprehensive survey for nationwide geothermal resources. Survey on radar imaging method - geothermal analysis conception design (Appendix); 1981 nendo zenkoku chinetsu shigen sogo chosa hokokusho. Radar eizoho chosa (chinetsu kaiseki gainen sekkei furoku)." Japan.
@misc{etde_20163331,
title = {Report for fiscal 1981 on comprehensive survey for nationwide geothermal resources. Survey on radar imaging method - geothermal analysis conception design (Appendix); 1981 nendo zenkoku chinetsu shigen sogo chosa hokokusho. Radar eizoho chosa (chinetsu kaiseki gainen sekkei furoku)}
author = {None}
abstractNote = {This paper explains different theoretical calculation methods used in gravity and magnetic force data analysis in geothermal resources survey. Analyzing the gravity data and the magnetic force data is capable of being applied with the potential theory. The increased speed and capacity of recent computers make easier the conversion of data into wave number zone. In relation with heavy magnetic force analysis, the paper explains such items as basic handling, IGRF remainder calculation, methods for topographic correction, conversion of primary and secondary polar magnetism and conversion of pseudo-gravity, coherent analysis, spectral ratio method, estimation of spectra by using MEM, spectrum moment method, heavy magnetic force simultaneously analyzing type modeling, constraint inversion method, and other methods. The paper further explains the sequential approximation method in magnetization calculation, methods for calculating equivalent magnetization distribution (methods by Bhattacharyya and Chan, and Nakatsuka), method for calculating equivalent magnetization distribution (method by O'Brien), primary and secondary polar magnetism conversion relation formulas, and theoretical calculation of spectral ratio. (NEDO)}
place = {Japan}
year = {1982}
month = {Oct}
}