You need JavaScript to view this

Fiscal 1994 achievement report. Development of photovoltaic power generation system practicalization technology - Development of ultrahigh-efficiency solar cell technology (Development of new photoelectric conversion material technology - Research on future feasibility of wet-type solar cells); Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Chokokoritsu taiyo denchi no gijutsu kaihatsu (shinkoden henkan zairyo no gijutsu kaihatsu (shisshiki taiyo denchi no shoraiteki kanosei no chosa))

Abstract

A survey is conducted of wet-type solar cells that may constitute an important field in solar chemistry. The wet type solar cell made known by Graetzel et al. in 1991 is a combination of ultrafine TiO{sub 2} grains and a sensitizing dye. The ultrafine grain surface structure enlarges the area of an electrode for the absorption of 46% of incident solar radiation of which 80% or more is converted into electric power. The fill factor at 520nm of a cell fabricated for an additional test turns out to be 40% against the 76% mentioned in technical literature, and the conversion efficiency 10%. The Titanyl sulfate is also tested because it is low in price as material for titanium oxide. Functional groups are experimentally introduced for the generation of bonds on the substrate to be effective in the injection of a sensitizing dye. A sensitizing dye with two carboxyl groups and two bipyridine rings as ligand is allowed to be supported by TiO{sub 2}. IR (infrared) spectrometry is performed, and then formation is found of ester-like bonds or chelate bonds due to the interaction of carboxyl groups and the substrate surface. This is enhanced by surface treatment. (NEDO)
Publication Date:
Mar 01, 1995
Product Type:
Technical Report
Report Number:
JP-NEDO-010007565
Resource Relation:
Other Information: PBD: Mar 1995
Subject:
14 SOLAR ENERGY; PHOTOVOLTAIC POWER PLANTS; SOLAR ENERGY CONVERSION; SOLAR CELLS; CHEMICAL REACTIONS; TITANIUM OXIDES; PARTICLES; DYES; SENSITIZERS; FILL FACTORS; ELECTRON TRANSFER; CARBOXYLATION; BIPYRIDINES; LIGANDS; ESTERS; CHELATES
OSTI ID:
20155406
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
TRN: JN0041923
Availability:
Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20155406
Submitting Site:
NEDO
Size:
50 pages
Announcement Date:
Jun 06, 2002

Citation Formats

None. Fiscal 1994 achievement report. Development of photovoltaic power generation system practicalization technology - Development of ultrahigh-efficiency solar cell technology (Development of new photoelectric conversion material technology - Research on future feasibility of wet-type solar cells); Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Chokokoritsu taiyo denchi no gijutsu kaihatsu (shinkoden henkan zairyo no gijutsu kaihatsu (shisshiki taiyo denchi no shoraiteki kanosei no chosa)). Japan: N. p., 1995. Web.
None. Fiscal 1994 achievement report. Development of photovoltaic power generation system practicalization technology - Development of ultrahigh-efficiency solar cell technology (Development of new photoelectric conversion material technology - Research on future feasibility of wet-type solar cells); Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Chokokoritsu taiyo denchi no gijutsu kaihatsu (shinkoden henkan zairyo no gijutsu kaihatsu (shisshiki taiyo denchi no shoraiteki kanosei no chosa)). Japan.
None. 1995. "Fiscal 1994 achievement report. Development of photovoltaic power generation system practicalization technology - Development of ultrahigh-efficiency solar cell technology (Development of new photoelectric conversion material technology - Research on future feasibility of wet-type solar cells); Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Chokokoritsu taiyo denchi no gijutsu kaihatsu (shinkoden henkan zairyo no gijutsu kaihatsu (shisshiki taiyo denchi no shoraiteki kanosei no chosa))." Japan.
@misc{etde_20155406,
title = {Fiscal 1994 achievement report. Development of photovoltaic power generation system practicalization technology - Development of ultrahigh-efficiency solar cell technology (Development of new photoelectric conversion material technology - Research on future feasibility of wet-type solar cells); Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Chokokoritsu taiyo denchi no gijutsu kaihatsu (shinkoden henkan zairyo no gijutsu kaihatsu (shisshiki taiyo denchi no shoraiteki kanosei no chosa))}
author = {None}
abstractNote = {A survey is conducted of wet-type solar cells that may constitute an important field in solar chemistry. The wet type solar cell made known by Graetzel et al. in 1991 is a combination of ultrafine TiO{sub 2} grains and a sensitizing dye. The ultrafine grain surface structure enlarges the area of an electrode for the absorption of 46% of incident solar radiation of which 80% or more is converted into electric power. The fill factor at 520nm of a cell fabricated for an additional test turns out to be 40% against the 76% mentioned in technical literature, and the conversion efficiency 10%. The Titanyl sulfate is also tested because it is low in price as material for titanium oxide. Functional groups are experimentally introduced for the generation of bonds on the substrate to be effective in the injection of a sensitizing dye. A sensitizing dye with two carboxyl groups and two bipyridine rings as ligand is allowed to be supported by TiO{sub 2}. IR (infrared) spectrometry is performed, and then formation is found of ester-like bonds or chelate bonds due to the interaction of carboxyl groups and the substrate surface. This is enhanced by surface treatment. (NEDO)}
place = {Japan}
year = {1995}
month = {Mar}
}