You need JavaScript to view this

FY 1993 Report on the industrial science and technology research and development project results. Research and development of non-linear photoelectronic materials; 1993 nendo hisenkei hikari denshi zairyo no kenkyu kaihatsu seika hokokusho

Abstract

Described herein are the results of the industrial science and technology research and development project for nonlinear optoelectronic materials. The more functional chiral and pi-conjugated compounds are investigated as the organic, low-molecular-weight materials. The technologies for the orientation-controlled crystal growth are continuously investigated. Polyacetylene is investigated as the conjugated pi-electron system. The glass-dispersed systems, prepared by the sol-gel, superlow-melting glass and super-cooling methods, are investigated. In order to elucidate the relationship between the organic superlattice and properties (e.g., photoelectronic properties), the intramolecular interactions under the superlattice conditions are estimated by the theoretical chemical calculations, and the optimum structures deduced from the measured properties are proposed. The thin, composite films of fine metallic particles and glass are prepared by the multi-dimensional sputtering, to explore the constituent materials suitable for the three-dimensional superstructures, and their properties are analyzed. The thin semiconductor films of superlattices are prepared by the molecular beam epitaxy method, to investigate the optimization of the structures and compositions. The basic aspects of the three-dimensional superstructures, prepared by the superfine machining, are investigated. The results of the comprehensive investigations and researches are also described. (NEDO)
Authors:
"NONE"
Publication Date:
Nov 01, 1994
Product Type:
Technical Report
Report Number:
JP-NEDO-010015451
Resource Relation:
Other Information: PBD: Nov 1994
Subject:
36 MATERIALS SCIENCE; NONLINEAR OPTICS; PHOTOELECTRIC EFFECT; CHIRALITY; ELECTRONIC STRUCTURE; DOUBLE BONDS; GRAIN ORIENTATION; GLASS; DISPERSIONS; SUPERLATTICES; INTERMOLECULAR FORCES; INTERACTIONS; SOLID STATE PHYSICS; SPUTTERING; MOLECULAR BEAM EPITAXY
OSTI ID:
20155360
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
TRN: JN0041877
Availability:
Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20155360
Submitting Site:
NEDO
Size:
877 pages
Announcement Date:

Citation Formats

FY 1993 Report on the industrial science and technology research and development project results. Research and development of non-linear photoelectronic materials; 1993 nendo hisenkei hikari denshi zairyo no kenkyu kaihatsu seika hokokusho. Japan: N. p., 1994. Web.
FY 1993 Report on the industrial science and technology research and development project results. Research and development of non-linear photoelectronic materials; 1993 nendo hisenkei hikari denshi zairyo no kenkyu kaihatsu seika hokokusho. Japan.
1994. "FY 1993 Report on the industrial science and technology research and development project results. Research and development of non-linear photoelectronic materials; 1993 nendo hisenkei hikari denshi zairyo no kenkyu kaihatsu seika hokokusho." Japan.
@misc{etde_20155360,
title = {FY 1993 Report on the industrial science and technology research and development project results. Research and development of non-linear photoelectronic materials; 1993 nendo hisenkei hikari denshi zairyo no kenkyu kaihatsu seika hokokusho}
abstractNote = {Described herein are the results of the industrial science and technology research and development project for nonlinear optoelectronic materials. The more functional chiral and pi-conjugated compounds are investigated as the organic, low-molecular-weight materials. The technologies for the orientation-controlled crystal growth are continuously investigated. Polyacetylene is investigated as the conjugated pi-electron system. The glass-dispersed systems, prepared by the sol-gel, superlow-melting glass and super-cooling methods, are investigated. In order to elucidate the relationship between the organic superlattice and properties (e.g., photoelectronic properties), the intramolecular interactions under the superlattice conditions are estimated by the theoretical chemical calculations, and the optimum structures deduced from the measured properties are proposed. The thin, composite films of fine metallic particles and glass are prepared by the multi-dimensional sputtering, to explore the constituent materials suitable for the three-dimensional superstructures, and their properties are analyzed. The thin semiconductor films of superlattices are prepared by the molecular beam epitaxy method, to investigate the optimization of the structures and compositions. The basic aspects of the three-dimensional superstructures, prepared by the superfine machining, are investigated. The results of the comprehensive investigations and researches are also described. (NEDO)}
place = {Japan}
year = {1994}
month = {Nov}
}