You need JavaScript to view this

Fiscal 1999 international cooperation project report. R and D on convection control technology of glass melts by microgravity experiment; 1999 nendo bisho juryoku kankyo wo riyoshita glass yuekinai tairyu seigyo gijutsu no kenkyu kaihatsu seika hokokusho

Abstract

This R and D aims at development of convection simulation technology of glass melts based on measurement of accurate glass melt properties, and development of convection control technology of glass melts through the model experiment and small tank furnace experiment. Experiment was made on measurement of surface tension while levitating glass melts under the microgravity condition obtained by the drop tower of Japan Microgravity Center in Hokkaido. The shape of glass melt changes into a real sphere under the microgravity condition, and surface tension can be obtained by measuring its frequency, however, such frequency of glass could not be measured in this experiment. Levitation, fusion and oscillation experiment of glass was carried out by using an aero-acoustic levitator of CRT at Chicago. The experiment result is now in analysis. This study also aims the analysis in consideration of a surface tension flow effect. The calculation result showed generation of surface tension flow due to temperature gradient on a liquid surface. Various information were obtained through the model experiment using silicon oil, and glass convention observation by using a small tank furnace. (NEDO)
Authors:
"NONE"
Publication Date:
Mar 01, 2000
Product Type:
Technical Report
Report Number:
JP-NEDO-010015057
Resource Relation:
Other Information: PBD: Mar 2000
Subject:
36 MATERIALS SCIENCE; WEIGHTLESSNESS; GLASS; MELTING; LIQUIDS; LIQUID FLOW; CONVECTION; SIMULATION; CONTROL; SILICONES; OILS; GAS FLOW; SURFACE TENSION; SOUND WAVES; LEVITATION; FREQUENCY MEASUREMENT; TEMPERATURE GRADIENTS
OSTI ID:
20124344
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
TRN: JN0041216
Availability:
Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20124344
Submitting Site:
NEDO
Size:
[200] pages
Announcement Date:

Citation Formats

Fiscal 1999 international cooperation project report. R and D on convection control technology of glass melts by microgravity experiment; 1999 nendo bisho juryoku kankyo wo riyoshita glass yuekinai tairyu seigyo gijutsu no kenkyu kaihatsu seika hokokusho. Japan: N. p., 2000. Web.
Fiscal 1999 international cooperation project report. R and D on convection control technology of glass melts by microgravity experiment; 1999 nendo bisho juryoku kankyo wo riyoshita glass yuekinai tairyu seigyo gijutsu no kenkyu kaihatsu seika hokokusho. Japan.
2000. "Fiscal 1999 international cooperation project report. R and D on convection control technology of glass melts by microgravity experiment; 1999 nendo bisho juryoku kankyo wo riyoshita glass yuekinai tairyu seigyo gijutsu no kenkyu kaihatsu seika hokokusho." Japan.
@misc{etde_20124344,
title = {Fiscal 1999 international cooperation project report. R and D on convection control technology of glass melts by microgravity experiment; 1999 nendo bisho juryoku kankyo wo riyoshita glass yuekinai tairyu seigyo gijutsu no kenkyu kaihatsu seika hokokusho}
abstractNote = {This R and D aims at development of convection simulation technology of glass melts based on measurement of accurate glass melt properties, and development of convection control technology of glass melts through the model experiment and small tank furnace experiment. Experiment was made on measurement of surface tension while levitating glass melts under the microgravity condition obtained by the drop tower of Japan Microgravity Center in Hokkaido. The shape of glass melt changes into a real sphere under the microgravity condition, and surface tension can be obtained by measuring its frequency, however, such frequency of glass could not be measured in this experiment. Levitation, fusion and oscillation experiment of glass was carried out by using an aero-acoustic levitator of CRT at Chicago. The experiment result is now in analysis. This study also aims the analysis in consideration of a surface tension flow effect. The calculation result showed generation of surface tension flow due to temperature gradient on a liquid surface. Various information were obtained through the model experiment using silicon oil, and glass convention observation by using a small tank furnace. (NEDO)}
place = {Japan}
year = {2000}
month = {Mar}
}