You need JavaScript to view this

FY 1986 Report on research and development of super heat pump energy accumulation system. System construction and operational study results (Systemization studies); 1986 nendo super heat pump energy shuseki system kenkyu kaihatsu seika hokokusho. System shisaku unten kenkyu (system ka kenkyu)

Abstract

The studies on combinations of high-performance compression heat pump and chemical heat accumulation systems are conducted to construct the optimum systems for air conditioning/hot water supply for large-sized buildings and local districts, and also for industrial processes. For partial optimization of super heat pump (SPH) accumulation system, the SPH operational mode is changed to find the optimum conditions. As a result, it is found that system efficiency is the highest, and hence the power cost is the lowest, when the system is continuously operated night and day, followed by 2-night/1-day mode and night alone mode, in this order, for office building air conditioning, district air conditioning, and hot water supply. The effects of combination of SHP and chemical heat accumulation systems incorporated in an industrial process for heating are estimated. The results indicate that power load leveling effect is not 100% but 92%, even when the heat required for the daytime operation is totally supplied from the chemical accumulation system. The skeleton of the super heat pump accumulation system simulator is finalized, and the elementary system modules are developed, to allow simulation of general flows. (NEDO)
Authors:
"NONE"
Publication Date:
Mar 01, 1987
Product Type:
Technical Report
Report Number:
JP-NEDO-010017826
Resource Relation:
Other Information: PBD: Mar 1987
Subject:
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; HEAT PUMPS; COMPRESSORS; THERMOCHEMICAL HEAT STORAGE; BUILDINGS; DISTRICT COOLING; DISTRICT HEATING; HOT WATER; PROCESS HEAT; ENERGY EFFICIENCY; SIMULATORS
OSTI ID:
20123876
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
TRN: JN0040988
Availability:
Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20123876
Submitting Site:
NEDO
Size:
354 pages
Announcement Date:

Citation Formats

FY 1986 Report on research and development of super heat pump energy accumulation system. System construction and operational study results (Systemization studies); 1986 nendo super heat pump energy shuseki system kenkyu kaihatsu seika hokokusho. System shisaku unten kenkyu (system ka kenkyu). Japan: N. p., 1987. Web.
FY 1986 Report on research and development of super heat pump energy accumulation system. System construction and operational study results (Systemization studies); 1986 nendo super heat pump energy shuseki system kenkyu kaihatsu seika hokokusho. System shisaku unten kenkyu (system ka kenkyu). Japan.
1987. "FY 1986 Report on research and development of super heat pump energy accumulation system. System construction and operational study results (Systemization studies); 1986 nendo super heat pump energy shuseki system kenkyu kaihatsu seika hokokusho. System shisaku unten kenkyu (system ka kenkyu)." Japan.
@misc{etde_20123876,
title = {FY 1986 Report on research and development of super heat pump energy accumulation system. System construction and operational study results (Systemization studies); 1986 nendo super heat pump energy shuseki system kenkyu kaihatsu seika hokokusho. System shisaku unten kenkyu (system ka kenkyu)}
abstractNote = {The studies on combinations of high-performance compression heat pump and chemical heat accumulation systems are conducted to construct the optimum systems for air conditioning/hot water supply for large-sized buildings and local districts, and also for industrial processes. For partial optimization of super heat pump (SPH) accumulation system, the SPH operational mode is changed to find the optimum conditions. As a result, it is found that system efficiency is the highest, and hence the power cost is the lowest, when the system is continuously operated night and day, followed by 2-night/1-day mode and night alone mode, in this order, for office building air conditioning, district air conditioning, and hot water supply. The effects of combination of SHP and chemical heat accumulation systems incorporated in an industrial process for heating are estimated. The results indicate that power load leveling effect is not 100% but 92%, even when the heat required for the daytime operation is totally supplied from the chemical accumulation system. The skeleton of the super heat pump accumulation system simulator is finalized, and the elementary system modules are developed, to allow simulation of general flows. (NEDO)}
place = {Japan}
year = {1987}
month = {Mar}
}