You need JavaScript to view this

Report on the research achievements in the Sunshine Project in fiscal 1992. Studies on a direct gasification catalyst; 1992 nendo chokusetsu ekika shokubai ni kansuru kenkyu seika hokokusho

Abstract

This paper describes the research achievements in the Sunshine Project in fiscal 1992 in studies on a direct gasification catalyst. The paper summarizes the points where the catalyst research has reached to date. The catalyst surface effective for hydrogenation is the metal surface that can dissociate hydrogen. However, metals having large adsorption heat against hydrogen do not show the activity greatly because these metals are difficult of desorbing hydrogen having high dissociating activity. The coal liquefaction system has the surface oxidized by water content, wherein hydrogen dissociation cannot be expected, and sulfides are suitable. When a sulfide catalyst contacts hydrogen, the catalyst itself is desulfurized, producing H{sub 2}S and becomes a low-order sulfide. When atmospheric H{sub 2}S contacts this sulfide, it dissociates into HS and H, and this H behaves as active hydrogen. However, the liquefaction activity can be recognized even in a sulfuric acid type catalyst containing no sulfide whatsoever, wherein the H{sub 2}S partial pressure in the reaction system becomes extremely low. This fact means that the active hydrogen is not necessarily generated by the dissociation of H{sub 2}S. There is no other way but to think that hydrogen is dissociated directly without going through H{sub 2}S. If  More>>
Authors:
"NONE"
Publication Date:
Oct 01, 1993
Product Type:
Technical Report
Report Number:
JP-NEDO-010017741
Resource Relation:
Other Information: PBD: Oct 1993
Subject:
01 COAL, LIGNITE, AND PEAT; SUNSHINE PROJECT; COAL LIQUEFACTION; CATALYSTS; HYDROGENATION; DISSOCIATION; SURFACE POTENTIAL; ABSORPTION HEAT; PASSIVITY; SULFIDES; HYDROGEN SULFIDES; IRON SULFATES; CHEMICAL ACTIVATION
OSTI ID:
20123793
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
TRN: JN0040905
Availability:
Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20123793
Submitting Site:
NEDO
Size:
73 pages
Announcement Date:

Citation Formats

Report on the research achievements in the Sunshine Project in fiscal 1992. Studies on a direct gasification catalyst; 1992 nendo chokusetsu ekika shokubai ni kansuru kenkyu seika hokokusho. Japan: N. p., 1993. Web.
Report on the research achievements in the Sunshine Project in fiscal 1992. Studies on a direct gasification catalyst; 1992 nendo chokusetsu ekika shokubai ni kansuru kenkyu seika hokokusho. Japan.
1993. "Report on the research achievements in the Sunshine Project in fiscal 1992. Studies on a direct gasification catalyst; 1992 nendo chokusetsu ekika shokubai ni kansuru kenkyu seika hokokusho." Japan.
@misc{etde_20123793,
title = {Report on the research achievements in the Sunshine Project in fiscal 1992. Studies on a direct gasification catalyst; 1992 nendo chokusetsu ekika shokubai ni kansuru kenkyu seika hokokusho}
abstractNote = {This paper describes the research achievements in the Sunshine Project in fiscal 1992 in studies on a direct gasification catalyst. The paper summarizes the points where the catalyst research has reached to date. The catalyst surface effective for hydrogenation is the metal surface that can dissociate hydrogen. However, metals having large adsorption heat against hydrogen do not show the activity greatly because these metals are difficult of desorbing hydrogen having high dissociating activity. The coal liquefaction system has the surface oxidized by water content, wherein hydrogen dissociation cannot be expected, and sulfides are suitable. When a sulfide catalyst contacts hydrogen, the catalyst itself is desulfurized, producing H{sub 2}S and becomes a low-order sulfide. When atmospheric H{sub 2}S contacts this sulfide, it dissociates into HS and H, and this H behaves as active hydrogen. However, the liquefaction activity can be recognized even in a sulfuric acid type catalyst containing no sulfide whatsoever, wherein the H{sub 2}S partial pressure in the reaction system becomes extremely low. This fact means that the active hydrogen is not necessarily generated by the dissociation of H{sub 2}S. There is no other way but to think that hydrogen is dissociated directly without going through H{sub 2}S. If this is true, it provides a new guideline in developing and designing the future catalysts. (NEDO)}
place = {Japan}
year = {1993}
month = {Oct}
}