Abstract
A computer program will be described which is capable to simulate severe transients in a gas heated steam generator. Such transients may arise in the safety analysis of accidents resulting from failures in the heat removal system of an HTGR power plant. Important failure modes which have to be considered are ruptures of one or more steam generator tubes leading to water or steam ejection into the primary system or anomalous operating conditions which my cause damage due to excessive thermal stress. Examples are the complete dryout as a consequence of feedwater interrupt in connection with continuing gas heating and the reflooding of the secondary channel with cold feedwater after dryout. The steam generator program which is capable to simulate accidents of this type is written as a module which can be implemented into a program system fur the simulation of the total heat rejection system. It based on an advanced mathematical model for the two phase flow taking deviations from thermal equilibrium into account. Mass, energy and momentum balances for the primary and secondary fluid and the heat diffusion equations for the heat exchanging wall form a system of coupled differential equations which is solved numerically by an algorithm
More>>
Meister, G
[1]
- Institut fuer Nukleare Sicherheitsforschung, Kernforschungsanlage Juelich GmbH, Juelich (Germany)
Citation Formats
Meister, G.
Dynamic simulation of steam generator failures.
IAEA: N. p.,
1988.
Web.
Meister, G.
Dynamic simulation of steam generator failures.
IAEA.
Meister, G.
1988.
"Dynamic simulation of steam generator failures."
IAEA.
@misc{etde_20113043,
title = {Dynamic simulation of steam generator failures}
author = {Meister, G}
abstractNote = {A computer program will be described which is capable to simulate severe transients in a gas heated steam generator. Such transients may arise in the safety analysis of accidents resulting from failures in the heat removal system of an HTGR power plant. Important failure modes which have to be considered are ruptures of one or more steam generator tubes leading to water or steam ejection into the primary system or anomalous operating conditions which my cause damage due to excessive thermal stress. Examples are the complete dryout as a consequence of feedwater interrupt in connection with continuing gas heating and the reflooding of the secondary channel with cold feedwater after dryout. The steam generator program which is capable to simulate accidents of this type is written as a module which can be implemented into a program system fur the simulation of the total heat rejection system. It based on an advanced mathematical model for the two phase flow taking deviations from thermal equilibrium into account. Mass, energy and momentum balances for the primary and secondary fluid and the heat diffusion equations for the heat exchanging wall form a system of coupled differential equations which is solved numerically by an algorithm which is stiffly stable and suppresses effectively oscillations of numerical origin. Results of the simulation of transients of the type mentioned above will be presented and discussed. (author)}
place = {IAEA}
year = {1988}
month = {Jul}
}
title = {Dynamic simulation of steam generator failures}
author = {Meister, G}
abstractNote = {A computer program will be described which is capable to simulate severe transients in a gas heated steam generator. Such transients may arise in the safety analysis of accidents resulting from failures in the heat removal system of an HTGR power plant. Important failure modes which have to be considered are ruptures of one or more steam generator tubes leading to water or steam ejection into the primary system or anomalous operating conditions which my cause damage due to excessive thermal stress. Examples are the complete dryout as a consequence of feedwater interrupt in connection with continuing gas heating and the reflooding of the secondary channel with cold feedwater after dryout. The steam generator program which is capable to simulate accidents of this type is written as a module which can be implemented into a program system fur the simulation of the total heat rejection system. It based on an advanced mathematical model for the two phase flow taking deviations from thermal equilibrium into account. Mass, energy and momentum balances for the primary and secondary fluid and the heat diffusion equations for the heat exchanging wall form a system of coupled differential equations which is solved numerically by an algorithm which is stiffly stable and suppresses effectively oscillations of numerical origin. Results of the simulation of transients of the type mentioned above will be presented and discussed. (author)}
place = {IAEA}
year = {1988}
month = {Jul}
}