You need JavaScript to view this

Fiscal 1980 Sunshine Project research report. R and D on preventive technology of scale deposition derived from hot water; 1980 nendo chinetsu nessui kara no scale fuchaku wo boshisuru gijutsu no kenkyu kaihatsu seika hokokusho

Abstract

This report summarizes the fiscal 1980 research result on preventive technology of scale deposition derived from hot water. Hot water of Nigori-Gawa, Hokkaido forms CaCO{sub 3} scale just after releasing into ambient air, and scale composed of amorphous silica and calcite at 60 degrees C or less, reaching a peak around pH 8. Deposition increases with a decrease in flow velocity and temperature. Polymerized silica removal experiment was made using Otake hot water and a floatation separator of 1 T/H. No cation and kerosene, and additional 6A-1 (coconut amine) and NS-18 (amine T) were effective for floatation separation. Continuous operation of the floatation separator of 50 T/H and a sludge recycling equipment was carried out as test for practical use. It was confirmed that addition of amine system floatation agent to hot water of 80 degrees C and pH 5 with polymerized silica of 20ppm is effective for reduction of polymerized silica in treatment water to 5ppm or less. The treated water was reinjected into Otake No.6 reinjection well. The sludge recycling equipment was tested for recycling floatation sludge separated, resulting in achievement of an expected target. (NEDO)
Publication Date:
Mar 31, 1981
Product Type:
Technical Report
Report Number:
JP-NEDO-010018456
Resource Relation:
Other Information: PBD: 31 Mar 1981
Subject:
15 GEOTHERMAL ENERGY; SUNSHINE PROJECT; GEOTHERMAL FLUIDS; SCALE CONTROL; CALCIUM CARBONATES; AMORPHOUS STATE; SILICA; CALCITE; PH VALUE; OTAKE GEOTHERMAL FIELD; FLOTATION; AMINES; INORGANIC POLYMERS; SLUDGES; MATERIALS RECOVERY
OSTI ID:
20102646
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
TRN: JN0040411
Availability:
Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20102646
Submitting Site:
NEDO
Size:
238 pages
Announcement Date:
May 24, 2002

Citation Formats

None. Fiscal 1980 Sunshine Project research report. R and D on preventive technology of scale deposition derived from hot water; 1980 nendo chinetsu nessui kara no scale fuchaku wo boshisuru gijutsu no kenkyu kaihatsu seika hokokusho. Japan: N. p., 1981. Web.
None. Fiscal 1980 Sunshine Project research report. R and D on preventive technology of scale deposition derived from hot water; 1980 nendo chinetsu nessui kara no scale fuchaku wo boshisuru gijutsu no kenkyu kaihatsu seika hokokusho. Japan.
None. 1981. "Fiscal 1980 Sunshine Project research report. R and D on preventive technology of scale deposition derived from hot water; 1980 nendo chinetsu nessui kara no scale fuchaku wo boshisuru gijutsu no kenkyu kaihatsu seika hokokusho." Japan.
@misc{etde_20102646,
title = {Fiscal 1980 Sunshine Project research report. R and D on preventive technology of scale deposition derived from hot water; 1980 nendo chinetsu nessui kara no scale fuchaku wo boshisuru gijutsu no kenkyu kaihatsu seika hokokusho}
author = {None}
abstractNote = {This report summarizes the fiscal 1980 research result on preventive technology of scale deposition derived from hot water. Hot water of Nigori-Gawa, Hokkaido forms CaCO{sub 3} scale just after releasing into ambient air, and scale composed of amorphous silica and calcite at 60 degrees C or less, reaching a peak around pH 8. Deposition increases with a decrease in flow velocity and temperature. Polymerized silica removal experiment was made using Otake hot water and a floatation separator of 1 T/H. No cation and kerosene, and additional 6A-1 (coconut amine) and NS-18 (amine T) were effective for floatation separation. Continuous operation of the floatation separator of 50 T/H and a sludge recycling equipment was carried out as test for practical use. It was confirmed that addition of amine system floatation agent to hot water of 80 degrees C and pH 5 with polymerized silica of 20ppm is effective for reduction of polymerized silica in treatment water to 5ppm or less. The treated water was reinjected into Otake No.6 reinjection well. The sludge recycling equipment was tested for recycling floatation sludge separated, resulting in achievement of an expected target. (NEDO)}
place = {Japan}
year = {1981}
month = {Mar}
}