You need JavaScript to view this

Achievement report for 1st phase (fiscal 1974-80) Sunshine Program research and development - Hydrogen energy. Research on hydrogen-fueled engine; 1974-1980 nendo suiso energy seika hokokusho. Suiso nenryo gendoki no kenkyu

Abstract

The research aims to acquire data necessary for designing an engine, which is fueled by hydrogen stored in metal hydrides, for an automobile power plant. It covers the characteristics of hydrogen and their theoretical examination, basic studies on the turbulent mixing and combustion of hydrogen, research using a single-cylinder engine, changes brought into engine performance upon addition of hydrogen, etc. When hydrogen is burned in a spark ignition engine, flashback to the induction system is prone to occur. But this is prevented by directly injecting nothing but hydrogen into the cylinder. In the case of hydrogen fuel, there is the problem of thermal NO generation. Since a hydrogen/air flame is higher in temperature than flames in the case of other fuels, it generates more NO. As techniques for lowering the flame temperature, there are lean fuel combustion, water vapor injection, delayed ignition timing, etc. For the improvement of power and performance, increasing the engine revolution and pressurizing the inlet air are the methods, but both have their own shortcomings. An engine equipped with a third valve is experimentally constructed in this research, which is theoretically free of flashback, suppresses a reduction in the inlet air volume, and necessitates no high-pressure  More>>
Authors:
"NONE"
Publication Date:
Mar 01, 1981
Product Type:
Technical Report
Report Number:
JP-NEDO-010018355
Resource Relation:
Other Information: PBD: Mar 1981
Subject:
08 HYDROGEN; SUNSHINE PROJECT; HYDROGEN; AUTOMOTIVE FUELS; SPARK IGNITION ENGINES; HYDRIDES; HYDROGEN STORAGE; TURBULENCE; COMBUSTION PROPERTIES; NITROGEN OXIDES; CYLINDERS
OSTI ID:
20102548
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
TRN: JN0040310
Availability:
Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20102548
Submitting Site:
NEDO
Size:
139 pages
Announcement Date:

Citation Formats

Achievement report for 1st phase (fiscal 1974-80) Sunshine Program research and development - Hydrogen energy. Research on hydrogen-fueled engine; 1974-1980 nendo suiso energy seika hokokusho. Suiso nenryo gendoki no kenkyu. Japan: N. p., 1981. Web.
Achievement report for 1st phase (fiscal 1974-80) Sunshine Program research and development - Hydrogen energy. Research on hydrogen-fueled engine; 1974-1980 nendo suiso energy seika hokokusho. Suiso nenryo gendoki no kenkyu. Japan.
1981. "Achievement report for 1st phase (fiscal 1974-80) Sunshine Program research and development - Hydrogen energy. Research on hydrogen-fueled engine; 1974-1980 nendo suiso energy seika hokokusho. Suiso nenryo gendoki no kenkyu." Japan.
@misc{etde_20102548,
title = {Achievement report for 1st phase (fiscal 1974-80) Sunshine Program research and development - Hydrogen energy. Research on hydrogen-fueled engine; 1974-1980 nendo suiso energy seika hokokusho. Suiso nenryo gendoki no kenkyu}
abstractNote = {The research aims to acquire data necessary for designing an engine, which is fueled by hydrogen stored in metal hydrides, for an automobile power plant. It covers the characteristics of hydrogen and their theoretical examination, basic studies on the turbulent mixing and combustion of hydrogen, research using a single-cylinder engine, changes brought into engine performance upon addition of hydrogen, etc. When hydrogen is burned in a spark ignition engine, flashback to the induction system is prone to occur. But this is prevented by directly injecting nothing but hydrogen into the cylinder. In the case of hydrogen fuel, there is the problem of thermal NO generation. Since a hydrogen/air flame is higher in temperature than flames in the case of other fuels, it generates more NO. As techniques for lowering the flame temperature, there are lean fuel combustion, water vapor injection, delayed ignition timing, etc. For the improvement of power and performance, increasing the engine revolution and pressurizing the inlet air are the methods, but both have their own shortcomings. An engine equipped with a third valve is experimentally constructed in this research, which is theoretically free of flashback, suppresses a reduction in the inlet air volume, and necessitates no high-pressure injection system. (NEDO)}
place = {Japan}
year = {1981}
month = {Mar}
}