You need JavaScript to view this

Achievement report on research and development in the Sunshine Project in fiscal 1980. Development of a hydrogen sulfide removing technology; 1980 nendo ryuka suiso jokyo gijutsu no kaihatsu seika hokokusho

Abstract

As part of geothermal development promotion program in the Sunshine Project, a hydrogen sulfide removing technology development has been worked on since fiscal 1977 for the purpose of environment preservation and multi-purpose utilization. Hydrogen sulfide in downstream fluid in a turbine is removed by more than 90% (as the target value), and the removed hydrogen sulfide is converted into single sulfur having an added value. For condenser waste gas processing, selection was made in fiscal 1980 on the RET process (sulfur is obtained by removing hydrogen sulfide in a suction column and an oxidation column), and for condensate processing, the stripping process (gas having been sent into a stripping column and stripped is fed into the RET device via demister for processing). Field tests were carried out by using fluid generated in a geothermal power plant. Conclusions were reached at high accuracy on optimal process selection corresponding to conditions of the fluid on the turbine outlet side and on the hydrogen sulfide removing cost. A process to treat fluid on the turbine inlet side is available, but not as economically effective as the downstream fluid processing. Same applies to the chemical processing method. A method to measure continually hydrogen sulfide  More>>
Publication Date:
Mar 01, 1981
Product Type:
Technical Report
Report Number:
JP-NEDO-010018334
Resource Relation:
Other Information: PBD: Mar 1981
Subject:
15 GEOTHERMAL ENERGY; SUNSHINE PROJECT; GEOTHERMAL POWER PLANTS; HYDROGEN SULFIDES; WASTE PROCESSING; POLLUTION CONTROL; TURBINES; VAPOR CONDENSERS; MATERIALS RECOVERY; FIELD TESTS; COST
OSTI ID:
20102528
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
TRN: JN0040289
Availability:
Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20102528
Submitting Site:
NEDO
Size:
221 pages
Announcement Date:
May 22, 2002

Citation Formats

None. Achievement report on research and development in the Sunshine Project in fiscal 1980. Development of a hydrogen sulfide removing technology; 1980 nendo ryuka suiso jokyo gijutsu no kaihatsu seika hokokusho. Japan: N. p., 1981. Web.
None. Achievement report on research and development in the Sunshine Project in fiscal 1980. Development of a hydrogen sulfide removing technology; 1980 nendo ryuka suiso jokyo gijutsu no kaihatsu seika hokokusho. Japan.
None. 1981. "Achievement report on research and development in the Sunshine Project in fiscal 1980. Development of a hydrogen sulfide removing technology; 1980 nendo ryuka suiso jokyo gijutsu no kaihatsu seika hokokusho." Japan.
@misc{etde_20102528,
title = {Achievement report on research and development in the Sunshine Project in fiscal 1980. Development of a hydrogen sulfide removing technology; 1980 nendo ryuka suiso jokyo gijutsu no kaihatsu seika hokokusho}
author = {None}
abstractNote = {As part of geothermal development promotion program in the Sunshine Project, a hydrogen sulfide removing technology development has been worked on since fiscal 1977 for the purpose of environment preservation and multi-purpose utilization. Hydrogen sulfide in downstream fluid in a turbine is removed by more than 90% (as the target value), and the removed hydrogen sulfide is converted into single sulfur having an added value. For condenser waste gas processing, selection was made in fiscal 1980 on the RET process (sulfur is obtained by removing hydrogen sulfide in a suction column and an oxidation column), and for condensate processing, the stripping process (gas having been sent into a stripping column and stripped is fed into the RET device via demister for processing). Field tests were carried out by using fluid generated in a geothermal power plant. Conclusions were reached at high accuracy on optimal process selection corresponding to conditions of the fluid on the turbine outlet side and on the hydrogen sulfide removing cost. A process to treat fluid on the turbine inlet side is available, but not as economically effective as the downstream fluid processing. Same applies to the chemical processing method. A method to measure continually hydrogen sulfide in geothermal steam has been established. (NEDO)}
place = {Japan}
year = {1981}
month = {Mar}
}