You need JavaScript to view this

Achievement report on research and development in the Sunshine Project in fiscal 1978. Research and development of hydrogen manufacturing technologies using the thermo-chemical method; 1978 nendo netsukagakuho ni yoru suiso seizo gijutsu no kenkyu kaihatsu seika hokokusho

Abstract

This paper describes a summary design of an iodine cycle experimenting equipment as one of the achievements in fiscal 1978 on research of hydrogen manufacturing technologies using the thermo-chemical method. The object of the equipment is a reaction to derive Mg(IO{sub 3}){sub 2} and MgI{sub 2} from MgO being the first reaction of the cycle, and iodine. The by-product (Q-phase) is produced according to composition of the aqueous reaction solution. The occurring reaction and composition of the produced materials vary depending on which contact system the reactor type uses, countercurrent flow or concurrent flow. Discussions were given on both types. Hydrogen generation rate of 1 Nm{sup 3}/hr was assumed as the equipment size to derive material balance and heat balance. Furthermore, types considered applicable were selected from different types of the solid-liquid reaction equipment, and summary design and calculation were performed. Process simulation provided a prospect of achieving thermal efficiency that can compete with the electrolytic process. As a study on materials for a magnesium iodate pyrolytic equipment as the second reaction, corrosion tests were carried out in a gas mixture composed of iodine, oxygen and steam. Using 26 kinds of metallic materials as the objects, the tests were executed  More>>
Publication Date:
May 31, 1979
Product Type:
Technical Report
Report Number:
JP-NEDO-010018319
Resource Relation:
Other Information: PBD: 31 May 1979
Subject:
08 HYDROGEN; SUNSHINE PROJECT; THERMOCHEMICAL PROCESSES; HYDROGEN PRODUCTION; MECHANICAL ENGINEERING; MAGNESIUM OXIDES; IODINE; IODATES; MAGNESIUM IODIDES; CHEMICAL REACTORS; CORROSION; THERMAL EFFICIENCY
OSTI ID:
20102513
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
TRN: JN0040274
Availability:
Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20102513
Submitting Site:
NEDO
Size:
215 pages
Announcement Date:
May 21, 2002

Citation Formats

None. Achievement report on research and development in the Sunshine Project in fiscal 1978. Research and development of hydrogen manufacturing technologies using the thermo-chemical method; 1978 nendo netsukagakuho ni yoru suiso seizo gijutsu no kenkyu kaihatsu seika hokokusho. Japan: N. p., 1979. Web.
None. Achievement report on research and development in the Sunshine Project in fiscal 1978. Research and development of hydrogen manufacturing technologies using the thermo-chemical method; 1978 nendo netsukagakuho ni yoru suiso seizo gijutsu no kenkyu kaihatsu seika hokokusho. Japan.
None. 1979. "Achievement report on research and development in the Sunshine Project in fiscal 1978. Research and development of hydrogen manufacturing technologies using the thermo-chemical method; 1978 nendo netsukagakuho ni yoru suiso seizo gijutsu no kenkyu kaihatsu seika hokokusho." Japan.
@misc{etde_20102513,
title = {Achievement report on research and development in the Sunshine Project in fiscal 1978. Research and development of hydrogen manufacturing technologies using the thermo-chemical method; 1978 nendo netsukagakuho ni yoru suiso seizo gijutsu no kenkyu kaihatsu seika hokokusho}
author = {None}
abstractNote = {This paper describes a summary design of an iodine cycle experimenting equipment as one of the achievements in fiscal 1978 on research of hydrogen manufacturing technologies using the thermo-chemical method. The object of the equipment is a reaction to derive Mg(IO{sub 3}){sub 2} and MgI{sub 2} from MgO being the first reaction of the cycle, and iodine. The by-product (Q-phase) is produced according to composition of the aqueous reaction solution. The occurring reaction and composition of the produced materials vary depending on which contact system the reactor type uses, countercurrent flow or concurrent flow. Discussions were given on both types. Hydrogen generation rate of 1 Nm{sup 3}/hr was assumed as the equipment size to derive material balance and heat balance. Furthermore, types considered applicable were selected from different types of the solid-liquid reaction equipment, and summary design and calculation were performed. Process simulation provided a prospect of achieving thermal efficiency that can compete with the electrolytic process. As a study on materials for a magnesium iodate pyrolytic equipment as the second reaction, corrosion tests were carried out in a gas mixture composed of iodine, oxygen and steam. Using 26 kinds of metallic materials as the objects, the tests were executed at 100 and 300 degrees C for 100 hours. Long-term durability tests were also performed on materials judged to have good corrosion resistance. (NEDO)}
place = {Japan}
year = {1979}
month = {May}
}