You need JavaScript to view this

Achievement report on research and development in the Sunshine Project in fiscal 1976. Researches related to hydrogen refining, transporting and storing systems, and safety assurance technologies (Surveys and researches on low-temperature storage of hydrogen, and measurement and control systems for safety in refining stage); 1976 nendo suiso no seisei, yuso, chozo system oyobi hoan gijutsu ni kansuru kenkyu seika hokokusho. Suiso no teion chozo, seisei dankai no anzen no tame no keisoku seigyo system ni kansuru chosa kenkyu

Abstract

This paper discusses low-temperature storage of hydrogen, and safety in the refining stage thereof. Discussions were given on a device to discharge safely hydrogen evaporated from a liquefied hydrogen storing tank rolly. A testing equipment of a 1/10 size of a full size equipment was fabricated on a trial basis. The equipment was used to test discharging a gaseous mixture containing hydrogen at concentration of about 2%, while air is being supplied from a blower directly connected to a gas motor (rotating on gas pressure) with treatment rate of 15 Nm{sup 3}/h. In order to keep the hydrogen concentration below the lower explosion limit of 4%, uniformity in the spatial distribution of the concentration is important. Full consideration should be given thereto in future designing works. With a cryogenic adsorption refining device for hydrogen, oxygen content is adsorbed, and hydrogen is refined. During regeneration of the adsorption device, oxygen is discharged. Experiments on regeneration methods were performed for comparing and discussing oxygen discharge behavior by using three systems: nitrogen purge, hydrogen purge, and temperature raising. Cases were found in which oxygen concentration in the exhaust gas exceeds the lower explosion limit of 4%. There is a number of important assignments  More>>
Publication Date:
Mar 01, 1977
Product Type:
Technical Report
Report Number:
JP-NEDO-010018302
Resource Relation:
Other Information: PBD: Mar 1977
Subject:
08 HYDROGEN; SUNSHINE PROJECT; HYDROGEN STORAGE; TRANSPORT; SAFETY ENGINEERING; REFINING; CRYOGENICS; TANKS; WASTE DISPOSAL; DETONATION LIMITS; ADSORPTION; DESORPTION; OXYGEN; IGNITION
OSTI ID:
20102496
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
TRN: JN0040257
Availability:
Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20102496
Submitting Site:
NEDO
Size:
[100] pages
Announcement Date:
May 21, 2002

Citation Formats

None. Achievement report on research and development in the Sunshine Project in fiscal 1976. Researches related to hydrogen refining, transporting and storing systems, and safety assurance technologies (Surveys and researches on low-temperature storage of hydrogen, and measurement and control systems for safety in refining stage); 1976 nendo suiso no seisei, yuso, chozo system oyobi hoan gijutsu ni kansuru kenkyu seika hokokusho. Suiso no teion chozo, seisei dankai no anzen no tame no keisoku seigyo system ni kansuru chosa kenkyu. Japan: N. p., 1977. Web.
None. Achievement report on research and development in the Sunshine Project in fiscal 1976. Researches related to hydrogen refining, transporting and storing systems, and safety assurance technologies (Surveys and researches on low-temperature storage of hydrogen, and measurement and control systems for safety in refining stage); 1976 nendo suiso no seisei, yuso, chozo system oyobi hoan gijutsu ni kansuru kenkyu seika hokokusho. Suiso no teion chozo, seisei dankai no anzen no tame no keisoku seigyo system ni kansuru chosa kenkyu. Japan.
None. 1977. "Achievement report on research and development in the Sunshine Project in fiscal 1976. Researches related to hydrogen refining, transporting and storing systems, and safety assurance technologies (Surveys and researches on low-temperature storage of hydrogen, and measurement and control systems for safety in refining stage); 1976 nendo suiso no seisei, yuso, chozo system oyobi hoan gijutsu ni kansuru kenkyu seika hokokusho. Suiso no teion chozo, seisei dankai no anzen no tame no keisoku seigyo system ni kansuru chosa kenkyu." Japan.
@misc{etde_20102496,
title = {Achievement report on research and development in the Sunshine Project in fiscal 1976. Researches related to hydrogen refining, transporting and storing systems, and safety assurance technologies (Surveys and researches on low-temperature storage of hydrogen, and measurement and control systems for safety in refining stage); 1976 nendo suiso no seisei, yuso, chozo system oyobi hoan gijutsu ni kansuru kenkyu seika hokokusho. Suiso no teion chozo, seisei dankai no anzen no tame no keisoku seigyo system ni kansuru chosa kenkyu}
author = {None}
abstractNote = {This paper discusses low-temperature storage of hydrogen, and safety in the refining stage thereof. Discussions were given on a device to discharge safely hydrogen evaporated from a liquefied hydrogen storing tank rolly. A testing equipment of a 1/10 size of a full size equipment was fabricated on a trial basis. The equipment was used to test discharging a gaseous mixture containing hydrogen at concentration of about 2%, while air is being supplied from a blower directly connected to a gas motor (rotating on gas pressure) with treatment rate of 15 Nm{sup 3}/h. In order to keep the hydrogen concentration below the lower explosion limit of 4%, uniformity in the spatial distribution of the concentration is important. Full consideration should be given thereto in future designing works. With a cryogenic adsorption refining device for hydrogen, oxygen content is adsorbed, and hydrogen is refined. During regeneration of the adsorption device, oxygen is discharged. Experiments on regeneration methods were performed for comparing and discussing oxygen discharge behavior by using three systems: nitrogen purge, hydrogen purge, and temperature raising. Cases were found in which oxygen concentration in the exhaust gas exceeds the lower explosion limit of 4%. There is a number of important assignments to assure safety, including specific measures to prevent the above excess, reciprocal influence of multiple impurities, and removal of ignition sources. The present experiments have great significance in providing fundamental items of information. (NEDO)}
place = {Japan}
year = {1977}
month = {Mar}
}