You need JavaScript to view this

Achievement report for fiscal 1981 on Sunshine Program research and development of photovoltaic power systems. Research and development of amorphous solar cells (Research on amorphous silicon defect density); 1981 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. Amorphous taiyo denchi no kenkyu kaihatsu (Amorphous silicon no kekkan mitsudo no kenkyu)

Abstract

So as to determine the energy distribution of defect level density in a-Si, which is indispensable for an optimum solar cell design, the hitherto unclear theoretical relationship between the field effect method and MOS (metal oxide semiconductor) capacity method is made clear, and a unified theory is newly established. A high-speed totally automatic evaluation system is developed, capable of high-accuracy determination of defect levels. For the realization of an a-Si MOS structure required for fulfilling the above purpose, a-Si is grown and then diborane and ammonia are subjected to a glow discharge decomposition process for the formation of a new insulation film. It is found that the material may be utilized for MOS structure construction for defect density evaluation. Studies are conducted on plasma emission spectroscopy and infrared absorption analysis for the elucidation of growth mechanism for the growth of high-quality a-Si. Key radicals in plasma that govern film growth are investigated. It is disclosed that excited hydrogen in plasma plays an important part in microcrystalline phase deposition. It is also disclosed that hydrogenation greatly improves on CVD (chemical vapor deposition) a-Si doping efficiency. (NEDO)
Authors:
"NONE"
Publication Date:
Mar 01, 1982
Product Type:
Technical Report
Report Number:
JP-NEDO-0017972
Resource Relation:
Other Information: PBD: Mar 1982
Subject:
14 SOLAR ENERGY; SUNSHINE PROJECT; PHOTOVOLTAIC POWER PLANTS; AMORPHOUS STATE; SILICON SOLAR CELLS; CRYSTAL DEFECTS; ENERGY-LEVEL DENSITY; MOS SOLAR CELLS; CALIBRATION STANDARDS; EMISSION SPECTROSCOPY; INFRARED SPECTRA; CRYSTAL GROWTH; REACTION INTERMEDIATES; HYDROGEN; EXCITED STATES
OSTI ID:
20094359
Research Organizations:
New Energy and Industrial Technology Development Organization, Tokyo (Japan)
Country of Origin:
Japan
Language:
Japanese
Other Identifying Numbers:
TRN: JN0040566
Availability:
Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20094359
Submitting Site:
NEDO
Size:
86 pages
Announcement Date:

Citation Formats

Achievement report for fiscal 1981 on Sunshine Program research and development of photovoltaic power systems. Research and development of amorphous solar cells (Research on amorphous silicon defect density); 1981 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. Amorphous taiyo denchi no kenkyu kaihatsu (Amorphous silicon no kekkan mitsudo no kenkyu). Japan: N. p., 1982. Web.
Achievement report for fiscal 1981 on Sunshine Program research and development of photovoltaic power systems. Research and development of amorphous solar cells (Research on amorphous silicon defect density); 1981 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. Amorphous taiyo denchi no kenkyu kaihatsu (Amorphous silicon no kekkan mitsudo no kenkyu). Japan.
1982. "Achievement report for fiscal 1981 on Sunshine Program research and development of photovoltaic power systems. Research and development of amorphous solar cells (Research on amorphous silicon defect density); 1981 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. Amorphous taiyo denchi no kenkyu kaihatsu (Amorphous silicon no kekkan mitsudo no kenkyu)." Japan.
@misc{etde_20094359,
title = {Achievement report for fiscal 1981 on Sunshine Program research and development of photovoltaic power systems. Research and development of amorphous solar cells (Research on amorphous silicon defect density); 1981 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. Amorphous taiyo denchi no kenkyu kaihatsu (Amorphous silicon no kekkan mitsudo no kenkyu)}
abstractNote = {So as to determine the energy distribution of defect level density in a-Si, which is indispensable for an optimum solar cell design, the hitherto unclear theoretical relationship between the field effect method and MOS (metal oxide semiconductor) capacity method is made clear, and a unified theory is newly established. A high-speed totally automatic evaluation system is developed, capable of high-accuracy determination of defect levels. For the realization of an a-Si MOS structure required for fulfilling the above purpose, a-Si is grown and then diborane and ammonia are subjected to a glow discharge decomposition process for the formation of a new insulation film. It is found that the material may be utilized for MOS structure construction for defect density evaluation. Studies are conducted on plasma emission spectroscopy and infrared absorption analysis for the elucidation of growth mechanism for the growth of high-quality a-Si. Key radicals in plasma that govern film growth are investigated. It is disclosed that excited hydrogen in plasma plays an important part in microcrystalline phase deposition. It is also disclosed that hydrogenation greatly improves on CVD (chemical vapor deposition) a-Si doping efficiency. (NEDO)}
place = {Japan}
year = {1982}
month = {Mar}
}