You need JavaScript to view this

Microstructural and thermoelectric properties of p-type Te-doped Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} and n-type SbI{sub 3}-doped Bi{sub 2}Te{sub 2.85}Se{sub 0.15} compounds

Abstract

The p-type Te-doped Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} and n-type SbI{sub 3}-doped Bi{sub 2}Te{sub 2.85}Se{sub 0.15} thermoelectric compounds were fabricated by hot pressing in the temperature range of 380 to 440 C under 200 MPa in Ar. Both the compounds were highly dense and showed high crystalline quality. The grains of the compounds were preferentially oriented and contained many dislocations through the hot pressing. The fracture path followed the transgranular cleavage planes, which are perpendicular to the c-axis. In addition, with increasing the pressing temperature, the figure of merit was increased. The highest values of figure of merit for the p- and n-type compounds, which were obtained at 420 C, were 2.69 x 10{sup {minus}3}/K and 2.35 x 10{sup {minus}3}/K, respectively.
Publication Date:
Jul 01, 1997
Product Type:
Conference
Reference Number:
EDB-00:007290
Resource Relation:
Conference: 1997 Materials Research Society Spring Meeting, San Francisco, CA (US), 03/31/1997--04/03/1997; Other Information: Single article reprints are available through University Microfilms Inc., 300 North Zeeb Road, Ann Arbor, Michigan 48106; PBD: 1997; Related Information: In: Thermoelectric materials -- New directions and approaches. Materials Research Society symposium proceedings, Volume 478, by Tritt, T.M.; Kanatzidis, M.G.; Lyon, H.B. Jr.; Mahan, G.D. [eds.], 359 pages.
Subject:
30 DIRECT ENERGY CONVERSION; 36 MATERIALS SCIENCE; SEMICONDUCTOR MATERIALS; THERMOELECTRIC MATERIALS; MICROSTRUCTURE; THERMOELECTRIC PROPERTIES; DOPED MATERIALS; ANTIMONY TELLURIDES; BISMUTH TELLURIDES; SELENIUM TELLURIDES; EXPERIMENTAL DATA; ANTIMONY IODIDES
Sponsoring Organizations:
Korea Ministry of Information and Communication
OSTI ID:
20014249
Research Organizations:
Inha Univ., Inchon (KR)
Country of Origin:
United States
Language:
English
Other Identifying Numbers:
Other: ISBN 1-55899-382-7; TRN: IM200012%%177
Availability:
Materials Research Society, 506 Keystone Drive, Warrendale, PA 15086 (US); $71.00. Prices may become outdated.
Submitting Site:
DELTA
Size:
page(s) 127-132
Announcement Date:

Citation Formats

Seo, J, Park, K, Lee, C, and Kim, J. Microstructural and thermoelectric properties of p-type Te-doped Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} and n-type SbI{sub 3}-doped Bi{sub 2}Te{sub 2.85}Se{sub 0.15} compounds. United States: N. p., 1997. Web.
Seo, J, Park, K, Lee, C, & Kim, J. Microstructural and thermoelectric properties of p-type Te-doped Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} and n-type SbI{sub 3}-doped Bi{sub 2}Te{sub 2.85}Se{sub 0.15} compounds. United States.
Seo, J, Park, K, Lee, C, and Kim, J. 1997. "Microstructural and thermoelectric properties of p-type Te-doped Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} and n-type SbI{sub 3}-doped Bi{sub 2}Te{sub 2.85}Se{sub 0.15} compounds." United States.
@misc{etde_20014249,
title = {Microstructural and thermoelectric properties of p-type Te-doped Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} and n-type SbI{sub 3}-doped Bi{sub 2}Te{sub 2.85}Se{sub 0.15} compounds}
author = {Seo, J, Park, K, Lee, C, and Kim, J}
abstractNote = {The p-type Te-doped Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} and n-type SbI{sub 3}-doped Bi{sub 2}Te{sub 2.85}Se{sub 0.15} thermoelectric compounds were fabricated by hot pressing in the temperature range of 380 to 440 C under 200 MPa in Ar. Both the compounds were highly dense and showed high crystalline quality. The grains of the compounds were preferentially oriented and contained many dislocations through the hot pressing. The fracture path followed the transgranular cleavage planes, which are perpendicular to the c-axis. In addition, with increasing the pressing temperature, the figure of merit was increased. The highest values of figure of merit for the p- and n-type compounds, which were obtained at 420 C, were 2.69 x 10{sup {minus}3}/K and 2.35 x 10{sup {minus}3}/K, respectively.}
place = {United States}
year = {1997}
month = {Jul}
}