You need JavaScript to view this

Fuel cycle economics of HTRs

Abstract

The High Temperature Reactor commands a unique fuel cycle flexibility and alternative options are open to the utilities. The reference thorium reactor operating in the U-233 recycle mode is 10 to 20% cheaper than the low-enriched reactor; however, the thorium cycle depends on the supply of 93% enriched uranium and the availability of reprocessing and refabrication facilities to utilize its bred fissile material. The economic landscape towards the end of the 20th Century will presumably be dominated by pronounced increases in the costs of natural resources. In the case of nuclear energy, resource considerations are reflected in the price of uranium, which is expected Lo have reached 50 $/lbm U3O8 in the early 1990s and around 100 $/lbm U3O8 around 2010. In this economic environment the fuel cycle advantage of the thorium system amounts to some 20% and is capable of absorbing substantial expenses in bringing about the closing of the out-of-pile cycle. A most attractive aspect of the HTR fuel cycle flexibility is for the utility to start operating the reactor on the low enriched uranium cycle and at a later date switch over to the thorium cycle as this becomes economically more and more attractive. The incentive amounts  More>>
Authors:
Publication Date:
Jun 15, 1975
Product Type:
Technical Report
Report Number:
DCPM-20/Dragon-3; DPPN-338
Resource Relation:
Conference: 20. Dragon Countries Physics Meeting, Paris (France), Jun 1975
Subject:
21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; DRAGON REACTOR; HTGR TYPE REACTORS; EXPERIMENTAL REACTORS
Sponsoring Organizations:
OECD Dragon Project, Paris (France)
OSTI ID:
1352869
Research Organizations:
OECD Dragon Project, Paris (France)
Country of Origin:
NEA
Language:
English
Submitting Site:
OSTI
Size:
19 p.
Announcement Date:
Apr 27, 2017

Citation Formats

Hansen, U. Fuel cycle economics of HTRs. NEA: N. p., 1975. Web.
Hansen, U. Fuel cycle economics of HTRs. NEA.
Hansen, U. 1975. "Fuel cycle economics of HTRs." NEA.
@misc{etde_1352869,
title = {Fuel cycle economics of HTRs}
author = {Hansen, U.}
abstractNote = {The High Temperature Reactor commands a unique fuel cycle flexibility and alternative options are open to the utilities. The reference thorium reactor operating in the U-233 recycle mode is 10 to 20% cheaper than the low-enriched reactor; however, the thorium cycle depends on the supply of 93% enriched uranium and the availability of reprocessing and refabrication facilities to utilize its bred fissile material. The economic landscape towards the end of the 20th Century will presumably be dominated by pronounced increases in the costs of natural resources. In the case of nuclear energy, resource considerations are reflected in the price of uranium, which is expected Lo have reached 50 $/lbm U3O8 in the early 1990s and around 100 $/lbm U3O8 around 2010. In this economic environment the fuel cycle advantage of the thorium system amounts to some 20% and is capable of absorbing substantial expenses in bringing about the closing of the out-of-pile cycle. A most attractive aspect of the HTR fuel cycle flexibility is for the utility to start operating the reactor on the low enriched uranium cycle and at a later date switch over to the thorium cycle as this becomes economically more and more attractive. The incentive amounts to some 50 M$ in terms of present worth money at the time of decision making, assumed to take place 10 years after start-up. The closing of the thorium cycle is of paramount importance and a step to realize this objective lies in simplifying the head-end reprocessing technology by abandoning the segregation concept of feed and breed coated particles in the reference cycle. A one-coated-particle scheme in which all discharged uranium isotopes are recycled in mixed oxide particles is feasible and suffers a very minor economic penalty only.}
place = {NEA}
year = {1975}
month = {Jun}
}