You need JavaScript to view this

Fracture mechanical treatment of bridging stresses in ceramics

Abstract

Failure of ceramic materials often starts from cracks which can originate at pores, inclusions or can be generated during surface treatment. Fracture occurs when the stress intensity factor of the most serious crack in a component reaches a critical value K{sub lc}, the fracture toughness of the material. In case of ideal brittle materials the fracture toughness is independent of the crack extension and, consequently, identical with the stress intensity factor K{sub l0} necessary for the onset of stable crack growth. It is a well-known fact that failure of several ceramics is influenced by an increasing crack-growth resistance curve. Several effects are responsible for this behaviour. Crack-border interactions in the wake of the advancing crack, residual stress fields in the crack region of transformation-toughened ceramics, the generation of a micro-crack zone ahead the crack tip and crack branching. The effect of increasing crack resistance has consequences on many properties of ceramic materials. In this report the authors discuss the some aspects of R-curve behaviour as the representation by stress intensity factors or energies and the influence on the compliance using the bridging stress model. (orig.) [Deutsch] Das Versagen keramischer Werkstoffe geht haeufig von Rissen aus, die an Poren und Einschluessen  More>>
Authors:
Publication Date:
Dec 01, 1993
Product Type:
Technical Report
Report Number:
KFK-5256
Reference Number:
SCA: 360203; PA: DEN-94:0F7162; EDB-94:081949; ERA-19:019073; NTS-95:004768; SN: 94001207804
Resource Relation:
Other Information: PBD: Dec 1993
Subject:
36 MATERIALS SCIENCE; CERAMICS; FRACTURE MECHANICS; STRESS INTENSITY FACTORS; STRESSES; FAILURES; CRACK PROPAGATION; 360203; MECHANICAL PROPERTIES
OSTI ID:
10153300
Research Organizations:
Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Materialforschung
Country of Origin:
Germany
Language:
English
Other Identifying Numbers:
Journal ID: ISSN 0303-4003; Other: ON: DE94768973; TRN: DE94F7162
Availability:
OSTI; NTIS (US Sales Only); INIS
Submitting Site:
DEN
Size:
54 p.
Announcement Date:
Jul 06, 2005

Citation Formats

Fett, T, and Munz, D. Fracture mechanical treatment of bridging stresses in ceramics. Germany: N. p., 1993. Web.
Fett, T, & Munz, D. Fracture mechanical treatment of bridging stresses in ceramics. Germany.
Fett, T, and Munz, D. 1993. "Fracture mechanical treatment of bridging stresses in ceramics." Germany.
@misc{etde_10153300,
title = {Fracture mechanical treatment of bridging stresses in ceramics}
author = {Fett, T, and Munz, D}
abstractNote = {Failure of ceramic materials often starts from cracks which can originate at pores, inclusions or can be generated during surface treatment. Fracture occurs when the stress intensity factor of the most serious crack in a component reaches a critical value K{sub lc}, the fracture toughness of the material. In case of ideal brittle materials the fracture toughness is independent of the crack extension and, consequently, identical with the stress intensity factor K{sub l0} necessary for the onset of stable crack growth. It is a well-known fact that failure of several ceramics is influenced by an increasing crack-growth resistance curve. Several effects are responsible for this behaviour. Crack-border interactions in the wake of the advancing crack, residual stress fields in the crack region of transformation-toughened ceramics, the generation of a micro-crack zone ahead the crack tip and crack branching. The effect of increasing crack resistance has consequences on many properties of ceramic materials. In this report the authors discuss the some aspects of R-curve behaviour as the representation by stress intensity factors or energies and the influence on the compliance using the bridging stress model. (orig.) [Deutsch] Das Versagen keramischer Werkstoffe geht haeufig von Rissen aus, die an Poren und Einschluessen entstehen oder bei der Oberflaechenbearbeitung verursacht werden. Versagen einer keramischen Komponente tritt dann auf, wenn fuer den gefaehrlichsten Riss der kritische Spannungsintensitaetsfaktor K{sub lc} erreicht wird. Im Falle ideal sproeder Materialien ist die Risszaehigkeit K{sub lc} unabhaengig von der Rissverlaengerung und damit stets gleich dem zur Einleitung der Rissverlaengerung notwendigen spezifischen Spannungsintensitaetsfaktor K{sub l0}. Es gibt nun eine Reihe von Keramiken bei denen der Risswiderstand mit zunehmender Rissverlaengerung anwaechst. Mehrere Effekte koennen fuer diese Erscheinung verantwortlich gemacht werden: Rissflankenverhakungen im Bereich hinter der Rissspitze, Spannungsfelder im Rissspitzenbereich aufgrund von Phasenumwandlungen in umwandlungsverstaerkten Keramiken, die Entwicklung einer Mikrorisszone im Rissspitzenbereich sowie der Effekt der Rissverzweigung. Der Anstieg des Risswiderstands hat Konsequenzen auf eine Reihe von Eigenschaften der Keramiken. In dieser Arbeit soll ueber die Darstellung der R-Kurven in Form von Spannungsintensitaetsfaktoren sowie der Energiefreisetzungsrate und ueber den Einfluss der R-Kurve auf die Probennachgiebigkeit berichtet werden. (orig.)}
place = {Germany}
year = {1993}
month = {Dec}
}