Abstract
This thesis studies a new instrument -from its conception to the measures interpretation- that analyses electronic density gradient in the super critical transportation area of a laser plasma (0,35 {mu}m). This device, so-called of X-UV Schlieren, is based on the refraction property of a probe beam by an index gradient. Its specificity is the use of the X-UV emission at 13 nm (92 eV) of another laser plasma as X-UV probe. The conception and characterization of this instrument are defined thanks to both the emissivity and reflectivity properties of laser plasmas and the reflectivity properties of multilayers. Within this report are presented strioscopy images, spatially and spectrally resolved of an aluminium plasma from a 3.10{sup 12} W/cm{sup 2} laser flux, probed by a 13 nm wavelength. The device has to be closely aligned so as to obtain good contrast and good spatial resolution. For the first time, the refraction of a X-UV probe beam by a laser plasma is displayed. The experiments show that this refraction is all the more obvious for a gold probe plasma of energy 105 J and an aluminium probed plasma of energy 1 J. According to our plasma hydrodynamic simulation, the detected refraction corresponds to
More>>
Citation Formats
Lutrin, F.
Experimental studies of X-UV rays by a laser plasma: X-UV strioscopy by means of multilayer mirrors; Etude experimentale de la refraction X-UV par un plasma laser: strioscopie X-UV a l`aide de miroirs multicouches.
France: N. p.,
1996.
Web.
Lutrin, F.
Experimental studies of X-UV rays by a laser plasma: X-UV strioscopy by means of multilayer mirrors; Etude experimentale de la refraction X-UV par un plasma laser: strioscopie X-UV a l`aide de miroirs multicouches.
France.
Lutrin, F.
1996.
"Experimental studies of X-UV rays by a laser plasma: X-UV strioscopy by means of multilayer mirrors; Etude experimentale de la refraction X-UV par un plasma laser: strioscopie X-UV a l`aide de miroirs multicouches."
France.
@misc{etde_10147120,
title = {Experimental studies of X-UV rays by a laser plasma: X-UV strioscopy by means of multilayer mirrors; Etude experimentale de la refraction X-UV par un plasma laser: strioscopie X-UV a l`aide de miroirs multicouches}
author = {Lutrin, F}
abstractNote = {This thesis studies a new instrument -from its conception to the measures interpretation- that analyses electronic density gradient in the super critical transportation area of a laser plasma (0,35 {mu}m). This device, so-called of X-UV Schlieren, is based on the refraction property of a probe beam by an index gradient. Its specificity is the use of the X-UV emission at 13 nm (92 eV) of another laser plasma as X-UV probe. The conception and characterization of this instrument are defined thanks to both the emissivity and reflectivity properties of laser plasmas and the reflectivity properties of multilayers. Within this report are presented strioscopy images, spatially and spectrally resolved of an aluminium plasma from a 3.10{sup 12} W/cm{sup 2} laser flux, probed by a 13 nm wavelength. The device has to be closely aligned so as to obtain good contrast and good spatial resolution. For the first time, the refraction of a X-UV probe beam by a laser plasma is displayed. The experiments show that this refraction is all the more obvious for a gold probe plasma of energy 105 J and an aluminium probed plasma of energy 1 J. According to our plasma hydrodynamic simulation, the detected refraction corresponds to an electronic density gradient of 6,5.10{sup 25} electrons/cm{sup 4} in the two first microns of the sur-critical area. To study the parameters dependence of this gradient in the sur-critical area, several solutions for improving the instrument are produced. (author) 168 refs.}
place = {France}
year = {1996}
month = {May}
}
title = {Experimental studies of X-UV rays by a laser plasma: X-UV strioscopy by means of multilayer mirrors; Etude experimentale de la refraction X-UV par un plasma laser: strioscopie X-UV a l`aide de miroirs multicouches}
author = {Lutrin, F}
abstractNote = {This thesis studies a new instrument -from its conception to the measures interpretation- that analyses electronic density gradient in the super critical transportation area of a laser plasma (0,35 {mu}m). This device, so-called of X-UV Schlieren, is based on the refraction property of a probe beam by an index gradient. Its specificity is the use of the X-UV emission at 13 nm (92 eV) of another laser plasma as X-UV probe. The conception and characterization of this instrument are defined thanks to both the emissivity and reflectivity properties of laser plasmas and the reflectivity properties of multilayers. Within this report are presented strioscopy images, spatially and spectrally resolved of an aluminium plasma from a 3.10{sup 12} W/cm{sup 2} laser flux, probed by a 13 nm wavelength. The device has to be closely aligned so as to obtain good contrast and good spatial resolution. For the first time, the refraction of a X-UV probe beam by a laser plasma is displayed. The experiments show that this refraction is all the more obvious for a gold probe plasma of energy 105 J and an aluminium probed plasma of energy 1 J. According to our plasma hydrodynamic simulation, the detected refraction corresponds to an electronic density gradient of 6,5.10{sup 25} electrons/cm{sup 4} in the two first microns of the sur-critical area. To study the parameters dependence of this gradient in the sur-critical area, several solutions for improving the instrument are produced. (author) 168 refs.}
place = {France}
year = {1996}
month = {May}
}