You need JavaScript to view this

Eigenvalues and eigenvectors for the twisted Dirac operator over SU(N,1) and Spin(2N,1)

Abstract

Let X be a symmetric space of non compact type whose isometry group is either SU(n,1) or Spin(2n,1). Then the Dirac operator D is defined on L{sup 2}-sections of certain homogeneous vector bundles over X. Using representation theory we obtain explicitly the eigenvalues of D and describe the eigenspaces in terms of the discrete series. (author). 6 refs.
Authors:
Galina, E; [1]  Vargas, J
  1. FAMAF, Cordoba (Argentina)
Publication Date:
Oct 01, 1991
Product Type:
Technical Report
Report Number:
IC-91/347
Reference Number:
SCA: 661100; PA: AIX-23:044968; SN: 92000742907
Resource Relation:
Other Information: PBD: Oct 1991
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; DIRAC OPERATORS; EIGENVALUES; EIGENVECTORS; IRREDUCIBLE REPRESENTATIONS; SU GROUPS; 661100; CLASSICAL AND QUANTUM MECHANICS
OSTI ID:
10145234
Research Organizations:
International Centre for Theoretical Physics (ICTP), Trieste (Italy)
Country of Origin:
IAEA
Language:
English
Other Identifying Numbers:
Other: ON: DE92630204; TRN: XA9231020044968
Availability:
OSTI; NTIS (US Sales Only); INIS
Submitting Site:
INIS
Size:
22 p.
Announcement Date:
Jul 05, 2005

Citation Formats

Galina, E, and Vargas, J. Eigenvalues and eigenvectors for the twisted Dirac operator over SU(N,1) and Spin(2N,1). IAEA: N. p., 1991. Web.
Galina, E, & Vargas, J. Eigenvalues and eigenvectors for the twisted Dirac operator over SU(N,1) and Spin(2N,1). IAEA.
Galina, E, and Vargas, J. 1991. "Eigenvalues and eigenvectors for the twisted Dirac operator over SU(N,1) and Spin(2N,1)." IAEA.
@misc{etde_10145234,
title = {Eigenvalues and eigenvectors for the twisted Dirac operator over SU(N,1) and Spin(2N,1)}
author = {Galina, E, and Vargas, J}
abstractNote = {Let X be a symmetric space of non compact type whose isometry group is either SU(n,1) or Spin(2n,1). Then the Dirac operator D is defined on L{sup 2}-sections of certain homogeneous vector bundles over X. Using representation theory we obtain explicitly the eigenvalues of D and describe the eigenspaces in terms of the discrete series. (author). 6 refs.}
place = {IAEA}
year = {1991}
month = {Oct}
}