You need JavaScript to view this

The longitudinal structure function F{sub L}(x,Q{sup 2}) at small x

Abstract

The gluon contributions to the structure function F{sub L}(x, Q{sup 2}) is calculated using k{sub {perpendicular}}-factorization. A generalization of this factorization is given which allows the expression of structure functions and hard cross sections in terms of quantities being well defined within perturbative QCD. (orig.)
Authors:
Publication Date:
Jul 01, 1993
Product Type:
Conference
Report Number:
DESY-93-095; CONF-9303228-
Reference Number:
SCA: 662330; PA: DEN-94:0F3207; EDB-94:059087; ERA-19:013577; NTS-94:019398; SN: 94001169777
Resource Relation:
Conference: Workshop on HERA: the new frontier for QCD,Durham (United Kingdom),21-26 Mar 1993; Other Information: PBD: Jul 1993
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; QUANTUM CHROMODYNAMICS; DEEP INELASTIC SCATTERING; GLUON MODEL; STRUCTURE FUNCTIONS; CROSS SECTIONS; FACTORIZATION; PERTURBATION THEORY; QUARKS; TRANSVERSE MOMENTUM; DIFFERENTIAL CROSS SECTIONS; 662330; PHOTON AND CHARGED-LEPTON INTERACTIONS WITH HADRONS
OSTI ID:
10136020
Research Organizations:
Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). Inst. fuer Hochenergiephysik
Country of Origin:
Germany
Language:
English
Other Identifying Numbers:
Journal ID: ISSN 0418-9833; Other: ON: DE94752401; TRN: DE94F3207
Availability:
OSTI; NTIS (US Sales Only); INIS
Submitting Site:
DEN
Size:
8 p.
Announcement Date:
Jul 05, 2005

Citation Formats

Bluemlein, J. The longitudinal structure function F{sub L}(x,Q{sup 2}) at small x. Germany: N. p., 1993. Web.
Bluemlein, J. The longitudinal structure function F{sub L}(x,Q{sup 2}) at small x. Germany.
Bluemlein, J. 1993. "The longitudinal structure function F{sub L}(x,Q{sup 2}) at small x." Germany.
@misc{etde_10136020,
title = {The longitudinal structure function F{sub L}(x,Q{sup 2}) at small x}
author = {Bluemlein, J}
abstractNote = {The gluon contributions to the structure function F{sub L}(x, Q{sup 2}) is calculated using k{sub {perpendicular}}-factorization. A generalization of this factorization is given which allows the expression of structure functions and hard cross sections in terms of quantities being well defined within perturbative QCD. (orig.)}
place = {Germany}
year = {1993}
month = {Jul}
}