You need JavaScript to view this

Baecklund transformation for main chiral field problem with an arbitrary semisimple algebra

Abstract

An explicit form of the Baecklund transformation for the main chiral field problem (MCFP) for a semisimple Lie algebra is obtained in arbitrary dimension. The MCFP equations have exact solutions. 2 refs.
Authors:
Publication Date:
Dec 31, 1991
Product Type:
Technical Report
Report Number:
IHEP-OTF-91-136
Reference Number:
SCA: 662110; PA: AIX-24:034088; SN: 93000963707
Resource Relation:
Other Information: DN: Submitted to Lett. of Math. Phys.; PBD: 1991
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; ALGEBRAIC FIELD THEORY; BAECKLUND TRANSFORMATION; CHIRAL SYMMETRY; LIE GROUPS; 662110; THEORY OF FIELDS AND STRINGS
OSTI ID:
10135649
Research Organizations:
Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Serpukhov (Russian Federation). Inst. Fiziki Vysokikh Ehnergij
Country of Origin:
Russian Federation
Language:
English
Other Identifying Numbers:
Other: ON: DE93621378; TRN: RU9300862034088
Availability:
OSTI; NTIS (US Sales Only); INIS
Submitting Site:
INIS
Size:
[4] p.
Announcement Date:
Jul 05, 2005

Citation Formats

Leznov, A N. Baecklund transformation for main chiral field problem with an arbitrary semisimple algebra. Russian Federation: N. p., 1991. Web.
Leznov, A N. Baecklund transformation for main chiral field problem with an arbitrary semisimple algebra. Russian Federation.
Leznov, A N. 1991. "Baecklund transformation for main chiral field problem with an arbitrary semisimple algebra." Russian Federation.
@misc{etde_10135649,
title = {Baecklund transformation for main chiral field problem with an arbitrary semisimple algebra}
author = {Leznov, A N}
abstractNote = {An explicit form of the Baecklund transformation for the main chiral field problem (MCFP) for a semisimple Lie algebra is obtained in arbitrary dimension. The MCFP equations have exact solutions. 2 refs.}
place = {Russian Federation}
year = {1991}
month = {Dec}
}