You need JavaScript to view this

A homoclinic orbit for Lagrangian systems

Abstract

We prove the existence of a homoclinic orbit for Lagrangian system (LS) where the Lagrangian L(t,x,y) = 1/2 {Sigma}a{sub ij}(x)y{sub i}y{sub j} - V(t,x). A similar argument to (Ra) is used, where a{sub ij}(x) is an identity matrix. Now the differential equation is quasilinear and more estimates are needed to get the uniform bound for the second derivative of periodic sequence {l_brace}x{sub k}(t){r_brace} with period 2 kT. (author). 6 refs.
Authors:
Publication Date:
Dec 01, 1991
Product Type:
Technical Report
Report Number:
IC-91/395
Reference Number:
SCA: 661100; PA: AIX-23:028604; SN: 92000699592
Resource Relation:
Other Information: PBD: Dec 1991
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; LAGRANGIAN FUNCTION; ORBITS; ASYMPTOTIC SOLUTIONS; FUNCTIONALS; HAMILTONIANS; MATHEMATICAL MANIFOLDS; 661100; CLASSICAL AND QUANTUM MECHANICS
OSTI ID:
10132846
Research Organizations:
International Centre for Theoretical Physics (ICTP), Trieste (Italy)
Country of Origin:
IAEA
Language:
English
Other Identifying Numbers:
Other: ON: DE92622379; TRN: XA9230807028604
Availability:
OSTI; NTIS (US Sales Only); INIS
Submitting Site:
INIS
Size:
12 p.
Announcement Date:
Jul 04, 2005

Citation Formats

Shaoping, Wu. A homoclinic orbit for Lagrangian systems. IAEA: N. p., 1991. Web.
Shaoping, Wu. A homoclinic orbit for Lagrangian systems. IAEA.
Shaoping, Wu. 1991. "A homoclinic orbit for Lagrangian systems." IAEA.
@misc{etde_10132846,
title = {A homoclinic orbit for Lagrangian systems}
author = {Shaoping, Wu}
abstractNote = {We prove the existence of a homoclinic orbit for Lagrangian system (LS) where the Lagrangian L(t,x,y) = 1/2 {Sigma}a{sub ij}(x)y{sub i}y{sub j} - V(t,x). A similar argument to (Ra) is used, where a{sub ij}(x) is an identity matrix. Now the differential equation is quasilinear and more estimates are needed to get the uniform bound for the second derivative of periodic sequence {l_brace}x{sub k}(t){r_brace} with period 2 kT. (author). 6 refs.}
place = {IAEA}
year = {1991}
month = {Dec}
}