You need JavaScript to view this

On the systematic construction of convergent perturbation series; Zur systematischen Konstruktion konvergenter Stoerungsreihen

Abstract

Starting from the general decomposition of the many-body Hamiltonian parametrized by an operator {Lambda}we derive the class of `{Lambda}-transformed` perturbation series. Aiming at practical applications we consider many-body perturbation theory of atoms and molecules in finite dimensional Hilbert spaces. Investigation of the analyticity properties of the eigenvalues and eigenstates of the Hamiltonian as functions of the coupling parameter defined by the particular decomposition of H allows for the construction of (minimal) {Lambda}operators mapping an originally divergent series to a convergent one. There exists an operator {Lambda}{sub opt} leading to the exact results in first order. Further improvements of the above mentioned minimal {Lambda}operators can be achieved by approximations of {Lambda}{sub opt} leading to fast convergent perturbation series. As the size of the remaining perturbation is given by the {Lambda}operator chosen this method provides an a priori estimate of the convergence properties. (orig.)
Authors:
Publication Date:
Dec 01, 1993
Product Type:
Thesis/Dissertation
Report Number:
BONN-IR-93-68
Reference Number:
SCA: 661100; PA: DEN-94:0F2052; EDB-94:047879; ERA-19:013346; NTS-94:018211; SN: 94001162396
Resource Relation:
Other Information: TH: Diss.; PBD: Dec 1993
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; PERTURBATION THEORY; MANY-BODY PROBLEM; QUANTUM MECHANICS; MOLECULES; EXCITED STATES; LITHIUM HYDRIDES; POWER SERIES; CONVERGENCE; HAMILTONIANS; ELECTRONIC STRUCTURE; HILBERT SPACE; ATOMS; ANALYTIC FUNCTIONS; EIGENFUNCTIONS; EIGENSTATES; EIGENVALUES; TOPOLOGICAL MAPPING; RAYLEIGH-SCHROEDINGER FORMULA; 661100; CLASSICAL AND QUANTUM MECHANICS
OSTI ID:
10131445
Research Organizations:
Bonn Univ. (Germany). Physikalisches Inst.; Bonn Univ. (Germany). Mathematisch-Naturwissenschaftliche Fakultaet
Country of Origin:
Germany
Language:
German
Other Identifying Numbers:
Journal ID: ISSN 0172-8741; Other: ON: DE94747251; TRN: DE94F2052
Availability:
OSTI; NTIS (US Sales Only); INIS
Submitting Site:
DEN
Size:
69 p.
Announcement Date:
Jul 04, 2005

Citation Formats

Schmidt, C. On the systematic construction of convergent perturbation series; Zur systematischen Konstruktion konvergenter Stoerungsreihen. Germany: N. p., 1993. Web.
Schmidt, C. On the systematic construction of convergent perturbation series; Zur systematischen Konstruktion konvergenter Stoerungsreihen. Germany.
Schmidt, C. 1993. "On the systematic construction of convergent perturbation series; Zur systematischen Konstruktion konvergenter Stoerungsreihen." Germany.
@misc{etde_10131445,
title = {On the systematic construction of convergent perturbation series; Zur systematischen Konstruktion konvergenter Stoerungsreihen}
author = {Schmidt, C}
abstractNote = {Starting from the general decomposition of the many-body Hamiltonian parametrized by an operator {Lambda}we derive the class of `{Lambda}-transformed` perturbation series. Aiming at practical applications we consider many-body perturbation theory of atoms and molecules in finite dimensional Hilbert spaces. Investigation of the analyticity properties of the eigenvalues and eigenstates of the Hamiltonian as functions of the coupling parameter defined by the particular decomposition of H allows for the construction of (minimal) {Lambda}operators mapping an originally divergent series to a convergent one. There exists an operator {Lambda}{sub opt} leading to the exact results in first order. Further improvements of the above mentioned minimal {Lambda}operators can be achieved by approximations of {Lambda}{sub opt} leading to fast convergent perturbation series. As the size of the remaining perturbation is given by the {Lambda}operator chosen this method provides an a priori estimate of the convergence properties. (orig.)}
place = {Germany}
year = {1993}
month = {Dec}
}