You need JavaScript to view this

Analytical and numerical foundations for the scaling of plasma focus experiments considering the electric resistance; Analytische und numerische Grundlagen fuer die Skalierung von Plasmafokus-Experimenten mit Beruecksichtigung des elektrischen Widerstandes

Abstract

In continuation of the work by Decker et al. on current and neutron yield scaling of plasma focus devices, analytical solutions for the circuit equation with finite resistence R {ne} 0 in the run-down phase, and with R = 0 in the compression phase were derived. There follows an analytical scaling theory for maximum pinch currents under influence of finite resistance. Further, the two-dimensional three-fluid MHD-Code of the work by Behler was extended to the determination of the resistence R. Using this MHD-calculations, the conditions imposed on the model solutions, i.e. constant axial velocity and constant resistence in the run-down phase, were found to be acceptable. The analytical determined values for discharge current are compared with MHD-calculations and experiment. (orig.).
Publication Date:
Feb 01, 1991
Product Type:
Technical Report
Report Number:
IPF-91-2
Reference Number:
SCA: 700310; 700330; PA: DEN-93:002225; SN: 93000947109
Resource Relation:
Other Information: PBD: Feb 1991
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; PLASMA FOCUS; SCALING LAWS; PLASMA FOCUS DEVICES; RADIATION TRANSPORT; ENERGY TRANSFER; PLASMA CONFINEMENT; ELECTRIC CONDUCTIVITY; PLASMA SIMULATION; COMPUTERIZED SIMULATION; COMPUTER CODES; MHD EQUILIBRIUM; ELECTRIC CURRENTS; NUMERICAL SOLUTION; ANALYTICAL SOLUTION; 700310; 700330; PLASMA KINETICS, TRANSPORT, AND IMPURITIES
OSTI ID:
10128545
Research Organizations:
Stuttgart Univ. (Germany). Inst. fuer Plasmaforschung
Country of Origin:
Germany
Language:
German
Other Identifying Numbers:
Other: ON: DE93769238; TRN: DE9302225
Availability:
OSTI; NTIS (US Sales Only); INIS
Submitting Site:
DEN
Size:
123 p.
Announcement Date:
Jul 04, 2005

Citation Formats

Schiuma, C, Kaeppeler, H J, and Herold, H. Analytical and numerical foundations for the scaling of plasma focus experiments considering the electric resistance; Analytische und numerische Grundlagen fuer die Skalierung von Plasmafokus-Experimenten mit Beruecksichtigung des elektrischen Widerstandes. Germany: N. p., 1991. Web.
Schiuma, C, Kaeppeler, H J, & Herold, H. Analytical and numerical foundations for the scaling of plasma focus experiments considering the electric resistance; Analytische und numerische Grundlagen fuer die Skalierung von Plasmafokus-Experimenten mit Beruecksichtigung des elektrischen Widerstandes. Germany.
Schiuma, C, Kaeppeler, H J, and Herold, H. 1991. "Analytical and numerical foundations for the scaling of plasma focus experiments considering the electric resistance; Analytische und numerische Grundlagen fuer die Skalierung von Plasmafokus-Experimenten mit Beruecksichtigung des elektrischen Widerstandes." Germany.
@misc{etde_10128545,
title = {Analytical and numerical foundations for the scaling of plasma focus experiments considering the electric resistance; Analytische und numerische Grundlagen fuer die Skalierung von Plasmafokus-Experimenten mit Beruecksichtigung des elektrischen Widerstandes}
author = {Schiuma, C, Kaeppeler, H J, and Herold, H}
abstractNote = {In continuation of the work by Decker et al. on current and neutron yield scaling of plasma focus devices, analytical solutions for the circuit equation with finite resistence R {ne} 0 in the run-down phase, and with R = 0 in the compression phase were derived. There follows an analytical scaling theory for maximum pinch currents under influence of finite resistance. Further, the two-dimensional three-fluid MHD-Code of the work by Behler was extended to the determination of the resistence R. Using this MHD-calculations, the conditions imposed on the model solutions, i.e. constant axial velocity and constant resistence in the run-down phase, were found to be acceptable. The analytical determined values for discharge current are compared with MHD-calculations and experiment. (orig.).}
place = {Germany}
year = {1991}
month = {Feb}
}