Abstract
In this second part about rotations and angular momentum in quantum mechanics, the author explains the method of angular momentum addition and gives some properties of irreducible tensorial operators.
Citation Formats
Van de Wiele, J.
Rotations and angular momentum in quantum mechanics (2nd part); Rotations et moments angulaires en mecanique quantique (2eme partie).
France: N. p.,
1992.
Web.
Van de Wiele, J.
Rotations and angular momentum in quantum mechanics (2nd part); Rotations et moments angulaires en mecanique quantique (2eme partie).
France.
Van de Wiele, J.
1992.
"Rotations and angular momentum in quantum mechanics (2nd part); Rotations et moments angulaires en mecanique quantique (2eme partie)."
France.
@misc{etde_10127886,
title = {Rotations and angular momentum in quantum mechanics (2nd part); Rotations et moments angulaires en mecanique quantique (2eme partie)}
author = {Van de Wiele, J}
abstractNote = {In this second part about rotations and angular momentum in quantum mechanics, the author explains the method of angular momentum addition and gives some properties of irreducible tensorial operators.}
place = {France}
year = {1992}
month = {Dec}
}
title = {Rotations and angular momentum in quantum mechanics (2nd part); Rotations et moments angulaires en mecanique quantique (2eme partie)}
author = {Van de Wiele, J}
abstractNote = {In this second part about rotations and angular momentum in quantum mechanics, the author explains the method of angular momentum addition and gives some properties of irreducible tensorial operators.}
place = {France}
year = {1992}
month = {Dec}
}