You need JavaScript to view this

Rotations and angular momentum in quantum mechanics (2nd part); Rotations et moments angulaires en mecanique quantique (2eme partie)

Abstract

In this second part about rotations and angular momentum in quantum mechanics, the author explains the method of angular momentum addition and gives some properties of irreducible tensorial operators.
Authors:
Publication Date:
Dec 31, 1992
Product Type:
Technical Report
Report Number:
IPNO-DRE-92-15
Reference Number:
SCA: 661100; PA: AIX-24:024334; SN: 93000948260
Resource Relation:
Other Information: PBD: 1992
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; QUANTUM MECHANICS; TRANSFORMATIONS; CLEBSCH-GORDAN COEFFICIENTS; DIRAC OPERATORS; MATHEMATICAL MODELS; MATHEMATICAL SPACE; MATHEMATICS; MATRICES; QUANTUM NUMBERS; QUANTUM OPERATORS; RACAH COEFFICIENTS; SCALAR FIELDS; SPIN; SPINOR FIELDS; SPINORS; VECTOR FIELDS; WIGNER COEFFICIENTS; 661100; CLASSICAL AND QUANTUM MECHANICS
OSTI ID:
10127886
Research Organizations:
Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire
Country of Origin:
France
Language:
French
Other Identifying Numbers:
Other: ON: DE93617644; TRN: FR9300295024334
Availability:
OSTI; NTIS (US Sales Only); INIS
Submitting Site:
FRN
Size:
[190] p.
Announcement Date:
Jul 04, 2005

Citation Formats

Van de Wiele, J. Rotations and angular momentum in quantum mechanics (2nd part); Rotations et moments angulaires en mecanique quantique (2eme partie). France: N. p., 1992. Web.
Van de Wiele, J. Rotations and angular momentum in quantum mechanics (2nd part); Rotations et moments angulaires en mecanique quantique (2eme partie). France.
Van de Wiele, J. 1992. "Rotations and angular momentum in quantum mechanics (2nd part); Rotations et moments angulaires en mecanique quantique (2eme partie)." France.
@misc{etde_10127886,
title = {Rotations and angular momentum in quantum mechanics (2nd part); Rotations et moments angulaires en mecanique quantique (2eme partie)}
author = {Van de Wiele, J}
abstractNote = {In this second part about rotations and angular momentum in quantum mechanics, the author explains the method of angular momentum addition and gives some properties of irreducible tensorial operators.}
place = {France}
year = {1992}
month = {Dec}
}