You need JavaScript to view this

Clustering for algebraic K-systems

Abstract

We prove that for a von Neumann algebra that is an algebraic K system with respect to some automorphisms, the invariant state is K-clustering and r-clustering. Further we study in examples how far the Neumann algebra inherits the K property from the underlying C{sup *} algebra. (authors).
Publication Date:
Nov 10, 1993
Product Type:
Technical Report
Report Number:
UWThPh-1993-40
Reference Number:
SCA: 661100; PA: AIX-26:031461; EDB-95:047786; SN: 95001355798
Resource Relation:
Other Information: PBD: 10 Nov 1993
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; K MATRIX; MATHEMATICAL MODELS; QUANTUM FIELD THEORY; ALGEBRAIC FIELD THEORY; CLUSTER MODEL; FIELD ALGEBRA; HILBERT SPACE; PROJECTION OPERATORS; 661100; CLASSICAL AND QUANTUM MECHANICS
OSTI ID:
10125357
Research Organizations:
Vienna Univ. (Austria). Inst. fuer Theoretische Physik
Country of Origin:
Austria
Language:
English
Other Identifying Numbers:
Other: ON: DE95623603; TRN: AT9400508031461
Availability:
OSTI; NTIS (US Sales Only); INIS
Submitting Site:
INIS
Size:
10 p.
Announcement Date:
Jul 04, 2005

Citation Formats

Narnhofer, H, and Thirring, W. Clustering for algebraic K-systems. Austria: N. p., 1993. Web.
Narnhofer, H, & Thirring, W. Clustering for algebraic K-systems. Austria.
Narnhofer, H, and Thirring, W. 1993. "Clustering for algebraic K-systems." Austria.
@misc{etde_10125357,
title = {Clustering for algebraic K-systems}
author = {Narnhofer, H, and Thirring, W}
abstractNote = {We prove that for a von Neumann algebra that is an algebraic K system with respect to some automorphisms, the invariant state is K-clustering and r-clustering. Further we study in examples how far the Neumann algebra inherits the K property from the underlying C{sup *} algebra. (authors).}
place = {Austria}
year = {1993}
month = {Nov}
}