Abstract
The concept and experimental programme of the secondary nuclear beam facility BRENDA at GSI is presented. The central part of BRENDA is the magnetic spectrometer FRS providing spatially separated monoisotopic exotic beams of all elements up to uranium. The FRS as a versatile magnetic spectrometer for experiments with heavy ions in the energy range of (0.1-2) A.GeV has been used to study peripheral nuclear collisions from oxygen up to uranium projectiles. In the uranium experiments we discovered that projectile fission is a powerful tool to investigate new neutron-rich fission fragments. In the medium mass region we have identified the doubly magic nucleus {sup 100}Sn and measured its half-life. Light halo nuclei have been studied in kinematically complete experiments with the FRS in combination with the dipole magnet ALADIN, and the neutron detector LAND. The FRS combined with the storage and cooler ring ESR offers new precision experiments, e.g., direct mass measurements, decay studies of highly-charged nuclei, or nuclear structure studies in inverse kinematics. (orig.)
Citation Formats
Geissel, H.
Experiments with relativistic exotic nuclei at the FRS.
Germany: N. p.,
1994.
Web.
Geissel, H.
Experiments with relativistic exotic nuclei at the FRS.
Germany.
Geissel, H.
1994.
"Experiments with relativistic exotic nuclei at the FRS."
Germany.
@misc{etde_10121412,
title = {Experiments with relativistic exotic nuclei at the FRS}
author = {Geissel, H}
abstractNote = {The concept and experimental programme of the secondary nuclear beam facility BRENDA at GSI is presented. The central part of BRENDA is the magnetic spectrometer FRS providing spatially separated monoisotopic exotic beams of all elements up to uranium. The FRS as a versatile magnetic spectrometer for experiments with heavy ions in the energy range of (0.1-2) A.GeV has been used to study peripheral nuclear collisions from oxygen up to uranium projectiles. In the uranium experiments we discovered that projectile fission is a powerful tool to investigate new neutron-rich fission fragments. In the medium mass region we have identified the doubly magic nucleus {sup 100}Sn and measured its half-life. Light halo nuclei have been studied in kinematically complete experiments with the FRS in combination with the dipole magnet ALADIN, and the neutron detector LAND. The FRS combined with the storage and cooler ring ESR offers new precision experiments, e.g., direct mass measurements, decay studies of highly-charged nuclei, or nuclear structure studies in inverse kinematics. (orig.)}
place = {Germany}
year = {1994}
month = {Nov}
}
title = {Experiments with relativistic exotic nuclei at the FRS}
author = {Geissel, H}
abstractNote = {The concept and experimental programme of the secondary nuclear beam facility BRENDA at GSI is presented. The central part of BRENDA is the magnetic spectrometer FRS providing spatially separated monoisotopic exotic beams of all elements up to uranium. The FRS as a versatile magnetic spectrometer for experiments with heavy ions in the energy range of (0.1-2) A.GeV has been used to study peripheral nuclear collisions from oxygen up to uranium projectiles. In the uranium experiments we discovered that projectile fission is a powerful tool to investigate new neutron-rich fission fragments. In the medium mass region we have identified the doubly magic nucleus {sup 100}Sn and measured its half-life. Light halo nuclei have been studied in kinematically complete experiments with the FRS in combination with the dipole magnet ALADIN, and the neutron detector LAND. The FRS combined with the storage and cooler ring ESR offers new precision experiments, e.g., direct mass measurements, decay studies of highly-charged nuclei, or nuclear structure studies in inverse kinematics. (orig.)}
place = {Germany}
year = {1994}
month = {Nov}
}