You need JavaScript to view this

Short-circuit recognition algorithms for current-limitation switching; Kurzschluss-Erkennungsalgorithmen zum strombegrenzenden Schalten

Thesis/Dissertation:

Abstract

In this work, short-circuit recognition algorithms are examined for current-limitation switching in energy technique. Using the extrapolation criterion, an optimum algorithm is first derived for protecting a single phase load circuit and is compared with other conventional or new algorithms. The short-circuit recognition times, the current up to the time of recognition and the Joule integral to recognition are used as criteria. The parameters are considered relative to the switch-on phase position and the maximum values. A circuit is built for measuring digital values and it is shown what effect the low pass filter used in measurement has. For investigations of principle, simulation calculations and switching tests are carried out, where the algorithms are evaluated with high accuracy in floating decimal point calculations. To carry out switching tests, the algorithms are implemented on a powerful transputer T800 (32 bit processor with beat frequency of 20 MHz). In this way, it is possible to evaluate simple recognition algorithms with 12.5 {mu}sec in a floating decimal calculation. Finally, it is shown how short-circuits in a three phase system can be recognised. For this purpose, the recognition criteria described in the previous paragraphs are transferred to various types of short-circuits on the three  More>>
Authors:
Publication Date:
Apr 07, 1992
Product Type:
Thesis/Dissertation
Report Number:
ETDE-mf-93758385
Reference Number:
SCA: 240201; PA: DE-93:000666; SN: 93000924565
Resource Relation:
Other Information: TH: Diss. (Dr.-Ing.); PBD: 7 Apr 1992
Subject:
24 POWER TRANSMISSION AND DISTRIBUTION; POWER TRANSMISSION; ELECTRICAL FAULTS; LIMITER CIRCUITS; ALGORITHMS; SWITCHES; EXTRAPOLATION; DIGITAL SYSTEMS; FREQUENCY DEPENDENCE; MICROPROCESSORS; ON-LINE MEASUREMENT SYSTEMS; COMPUTERIZED SIMULATION; FLOWSHEETS; ERRORS; 240201; AC SYSTEMS
OSTI ID:
10117299
Research Organizations:
Technische Univ. Braunschweig (Germany). Fakultaet fuer Maschinenbau und Elektrotechnik
Country of Origin:
Germany
Language:
German
Other Identifying Numbers:
Other: ON: DE93758385; TRN: DE9300666
Availability:
OSTI; NTIS (US Sales Only)
Submitting Site:
DE
Size:
127 p.
Announcement Date:
Jun 30, 2005

Thesis/Dissertation:

Citation Formats

Stege, M. Short-circuit recognition algorithms for current-limitation switching; Kurzschluss-Erkennungsalgorithmen zum strombegrenzenden Schalten. Germany: N. p., 1992. Web.
Stege, M. Short-circuit recognition algorithms for current-limitation switching; Kurzschluss-Erkennungsalgorithmen zum strombegrenzenden Schalten. Germany.
Stege, M. 1992. "Short-circuit recognition algorithms for current-limitation switching; Kurzschluss-Erkennungsalgorithmen zum strombegrenzenden Schalten." Germany.
@misc{etde_10117299,
title = {Short-circuit recognition algorithms for current-limitation switching; Kurzschluss-Erkennungsalgorithmen zum strombegrenzenden Schalten}
author = {Stege, M}
abstractNote = {In this work, short-circuit recognition algorithms are examined for current-limitation switching in energy technique. Using the extrapolation criterion, an optimum algorithm is first derived for protecting a single phase load circuit and is compared with other conventional or new algorithms. The short-circuit recognition times, the current up to the time of recognition and the Joule integral to recognition are used as criteria. The parameters are considered relative to the switch-on phase position and the maximum values. A circuit is built for measuring digital values and it is shown what effect the low pass filter used in measurement has. For investigations of principle, simulation calculations and switching tests are carried out, where the algorithms are evaluated with high accuracy in floating decimal point calculations. To carry out switching tests, the algorithms are implemented on a powerful transputer T800 (32 bit processor with beat frequency of 20 MHz). In this way, it is possible to evaluate simple recognition algorithms with 12.5 {mu}sec in a floating decimal calculation. Finally, it is shown how short-circuits in a three phase system can be recognised. For this purpose, the recognition criteria described in the previous paragraphs are transferred to various types of short-circuits on the three phase system, on the one hand, and on the other hand, criteria are regarded which combine instantaneous values from all three phases. (orig.). [Deutsch] In dieser Arbeit werden Kurzschluss-Erkennungsalgorithmen zum strombegrenzenden Schalten in der Energietechnik untersucht. Zunaechst wird mit dem Extrapolationskriterium ein optimaler Algorithmus fuer den Schutz eines einphasigen Lastkreises abgeleitet und mit anderen konventionellen oder neuen Algorithmen verglichen. Dabei werden die Kurzschluss-Erkennungszeiten, der Strom zur Zeit der Erkennung und das Joulesche Integral bis zur Erkennung als Kriterien herangezogen. Betrachtet werden die Groessen in Abhaengigkeit von der Einschaltphasenlage und die jeweiligen Maximalwerte. Es wird eine Schaltung zur digitalen Messwerterfassung aufgebaut und gezeigt, welchen Einfluss das bei der Erfassung eingesetzte Tiefpassfilter hat. Fuer prinzipielle Untersuchungen werden Simulationsrechnungen und Schaltversuche durchgefuehrt, wobei die Algorithmen mit hoher Genauigkeit in Fliesskommarechnung ausgewertet werden. Fuer die Durchfuehrung von Schaltversuchen werden die Algorithmen auf einen leistungsfaehigen Transputer T800 (32-Bit-Prozessor mit 20 MHz Taktfrequenz) implementiert. Damit ist es moeglich, einfache Erkennungsalgorithmen innerhalb von 12,5 {mu}s in Fliesskommarechnung auszuwerten. Abschliessend wird dargestellt, wie Kurzschluesse in einem Dreiphasensystem erkannt werden koennen. Dazu werden zum einen die in den vorangegangenen Abschnitten beschriebenen Erkennungskriterien auf die verschiedenen Kurzschlussarten im Dreiphasensystem uebertragen, zum anderen werden Kriterien betrachtet, die Augenblickswerte aus allen drei Phasen miteinander kombinieren. (orig.).}
place = {Germany}
year = {1992}
month = {Apr}
}