Abstract
A method is presented for computing the direct and indirect radiative forcings of emissions of carbon dioxide, nitrous oxide and methane and comparing them in terms of their carbon-equivalent radiative forcing potential as a common unit. Examples illustrate application of the method in comparisons of the carbon-equivalent emissions from coal-, oil- and natural gas-based electricity and combined heat and power production assuming near-, medium- and long-term perspectives. The second article provides a systematic approach to calculating the net cost of avoiding greenhouse-gas emissions by adopting individual supply- and demand-side fuel switching and energy efficiency measures instead of proceeding down business as usual energy paths. Individual measures are grouped and ranked to form scenario packages for total and average costs of avoided carbon equivalent emissions. Examples are presented for Sweden, the United States and the state of Karnataka, India. A key finding is that there appears to exist significant emission avoiding potential that can be exploited at a net economic benefit to society. This potential is insufficient, however, to stabilize atmospheric concentrations of the greenhouse gases. The suggestion that changes can be made to energy systems leading to significant levels of avoided carbon dioxide emissions at little or no cost to
More>>
Citation Formats
Wilson, Deborah.
Energy systems and climate change: Approaches to formulating responses.
Sweden: N. p.,
1993.
Web.
Wilson, Deborah.
Energy systems and climate change: Approaches to formulating responses.
Sweden.
Wilson, Deborah.
1993.
"Energy systems and climate change: Approaches to formulating responses."
Sweden.
@misc{etde_10117158,
title = {Energy systems and climate change: Approaches to formulating responses}
author = {Wilson, Deborah}
abstractNote = {A method is presented for computing the direct and indirect radiative forcings of emissions of carbon dioxide, nitrous oxide and methane and comparing them in terms of their carbon-equivalent radiative forcing potential as a common unit. Examples illustrate application of the method in comparisons of the carbon-equivalent emissions from coal-, oil- and natural gas-based electricity and combined heat and power production assuming near-, medium- and long-term perspectives. The second article provides a systematic approach to calculating the net cost of avoiding greenhouse-gas emissions by adopting individual supply- and demand-side fuel switching and energy efficiency measures instead of proceeding down business as usual energy paths. Individual measures are grouped and ranked to form scenario packages for total and average costs of avoided carbon equivalent emissions. Examples are presented for Sweden, the United States and the state of Karnataka, India. A key finding is that there appears to exist significant emission avoiding potential that can be exploited at a net economic benefit to society. This potential is insufficient, however, to stabilize atmospheric concentrations of the greenhouse gases. The suggestion that changes can be made to energy systems leading to significant levels of avoided carbon dioxide emissions at little or no cost to society has been refuted by economic theoreticians, whose writings warn that policies aimed at avoiding greenhouse gas emissions will incur exorbitant costs. A case study of the potential to use ethanol produced from sugar cane as a transportation fuel in Thailand is used to illustrate an integrated approach to evaluating components of alternative energy systems}
place = {Sweden}
year = {1993}
month = {Apr}
}
title = {Energy systems and climate change: Approaches to formulating responses}
author = {Wilson, Deborah}
abstractNote = {A method is presented for computing the direct and indirect radiative forcings of emissions of carbon dioxide, nitrous oxide and methane and comparing them in terms of their carbon-equivalent radiative forcing potential as a common unit. Examples illustrate application of the method in comparisons of the carbon-equivalent emissions from coal-, oil- and natural gas-based electricity and combined heat and power production assuming near-, medium- and long-term perspectives. The second article provides a systematic approach to calculating the net cost of avoiding greenhouse-gas emissions by adopting individual supply- and demand-side fuel switching and energy efficiency measures instead of proceeding down business as usual energy paths. Individual measures are grouped and ranked to form scenario packages for total and average costs of avoided carbon equivalent emissions. Examples are presented for Sweden, the United States and the state of Karnataka, India. A key finding is that there appears to exist significant emission avoiding potential that can be exploited at a net economic benefit to society. This potential is insufficient, however, to stabilize atmospheric concentrations of the greenhouse gases. The suggestion that changes can be made to energy systems leading to significant levels of avoided carbon dioxide emissions at little or no cost to society has been refuted by economic theoreticians, whose writings warn that policies aimed at avoiding greenhouse gas emissions will incur exorbitant costs. A case study of the potential to use ethanol produced from sugar cane as a transportation fuel in Thailand is used to illustrate an integrated approach to evaluating components of alternative energy systems}
place = {Sweden}
year = {1993}
month = {Apr}
}