Abstract
Multiplicity distributions of negatively charged particles have been studied in restricted phase space intervals for central S + S, O + Au and S + Au collisions at 200 GeV/nucleon. It is shown that multiplicity distributions are well described by a negative binomial form irrespectively of the size and dimensionality of phase space domain. A clan structure analysis reveals interesting similarities between complex nuclear collisions and a simple partonic shower. The lognormal distribution agrees reasonably well with the multiplicity data in large domains, but fails in the case of small intervals. No universal scaling function was found to describe the shape of multiplicity distributions in phase space intervals of varying size. (orig.).
Baechler, J;
Hoffmann, M;
Runge, K;
Schmoetten, E;
[1]
Bartke, J;
Gladysz, E;
Kowalski, M;
Stefanski, P;
[2]
Bialkowska, H;
[3]
Bock, R;
Brockmann, R;
Sandoval, A;
[4]
Buncic, P;
Ferenc, D;
Kadija, K;
Ljubicic, A Jr;
Vranic, D;
[5]
Chase, S I;
Harris, J W;
Odyniec, G;
Pugh, H G;
Rai, G;
Teitelbaum, L;
Tonse, S;
[6]
Derado, I;
Eckardt, V;
Gebauer, H J;
Rauch, W;
Schmitz, N;
Seyboth, P;
Seyerlein, J;
Vesztergombi, G;
[7]
Eschke, J;
Heck, W;
Kabana, S;
Kuehmichel, A;
Lahanas, M;
Lee, Y;
Le Vine, M;
Margetis, S;
Renfordt, R;
Roehrich, D;
Rothard, H;
Schmidt, E;
Schneider, I;
Stock, R;
Stroebele, H;
Wenig, S;
[8]
Fleischmann, B;
Fuchs, M;
[4]
Gazdzicki, M;
Kosiec, J;
Skrzypczak, E;
[9]
Keidel, R;
Piper, A;
Puehlhofer, F;
[10]
Nappi, E;
Posa, F;
[11]
Paic, G;
[4]
Panagiotou, A D;
[12]
Petridis, A;
Vassileiadis, G;
[12]
Pfenning, J;
[13]
Wosiek, B;
[2]
NA35 Collaboration
- Fakultaet fuer Physik, Freiburg Univ. (Germany)
- Inst. of Nuclear Physics, Cracow (Poland)
- Inst. of Nuclear Studies, Warsaw (Poland)
- GSI, Darmstadt (Germany)
- Rudjer Boskovic Inst., Zagreb (Croatia)
- Lawrence Berkeley Lab., CA (United States)
- Max-Planck-Inst. fuer Physik, Muenchen (Germany)
- Fachbereich Physik, Frankfurt Univ. (Germany)
- Inst. of Experimental Physics, Warsaw Univ. (Poland)
- Fachbereich Physik, Marburg Univ. (Germany)
- INFN, Bari (Italy)
- Physics Dept., Athens Univ. (Greece)
- CERN, Geneva (Switzerland)
Citation Formats
Baechler, J, Hoffmann, M, Runge, K, Schmoetten, E, Bartke, J, Gladysz, E, Kowalski, M, Stefanski, P, Bialkowska, H, Bock, R, Brockmann, R, Sandoval, A, Buncic, P, Ferenc, D, Kadija, K, Ljubicic, A Jr, Vranic, D, Chase, S I, Harris, J W, Odyniec, G, Pugh, H G, Rai, G, Teitelbaum, L, Tonse, S, Derado, I, Eckardt, V, Gebauer, H J, Rauch, W, Schmitz, N, Seyboth, P, Seyerlein, J, Vesztergombi, G, Eschke, J, Heck, W, Kabana, S, Kuehmichel, A, Lahanas, M, Lee, Y, Le Vine, M, Margetis, S, Renfordt, R, Roehrich, D, Rothard, H, Schmidt, E, Schneider, I, Stock, R, Stroebele, H, Wenig, S, Fleischmann, B, Fuchs, M, Gazdzicki, M, Kosiec, J, Skrzypczak, E, Keidel, R, Piper, A, Puehlhofer, F, Nappi, E, Posa, F, Paic, G, Panagiotou, A D, Petridis, A, Vassileiadis, G, Pfenning, J, Wosiek, B, and NA35 Collaboration.
Multiplicity distributions in small phase-space domains in central nucleus-nucleus collisions.
Germany: N. p.,
1992.
Web.
Baechler, J, Hoffmann, M, Runge, K, Schmoetten, E, Bartke, J, Gladysz, E, Kowalski, M, Stefanski, P, Bialkowska, H, Bock, R, Brockmann, R, Sandoval, A, Buncic, P, Ferenc, D, Kadija, K, Ljubicic, A Jr, Vranic, D, Chase, S I, Harris, J W, Odyniec, G, Pugh, H G, Rai, G, Teitelbaum, L, Tonse, S, Derado, I, Eckardt, V, Gebauer, H J, Rauch, W, Schmitz, N, Seyboth, P, Seyerlein, J, Vesztergombi, G, Eschke, J, Heck, W, Kabana, S, Kuehmichel, A, Lahanas, M, Lee, Y, Le Vine, M, Margetis, S, Renfordt, R, Roehrich, D, Rothard, H, Schmidt, E, Schneider, I, Stock, R, Stroebele, H, Wenig, S, Fleischmann, B, Fuchs, M, Gazdzicki, M, Kosiec, J, Skrzypczak, E, Keidel, R, Piper, A, Puehlhofer, F, Nappi, E, Posa, F, Paic, G, Panagiotou, A D, Petridis, A, Vassileiadis, G, Pfenning, J, Wosiek, B, & NA35 Collaboration.
Multiplicity distributions in small phase-space domains in central nucleus-nucleus collisions.
Germany.
Baechler, J, Hoffmann, M, Runge, K, Schmoetten, E, Bartke, J, Gladysz, E, Kowalski, M, Stefanski, P, Bialkowska, H, Bock, R, Brockmann, R, Sandoval, A, Buncic, P, Ferenc, D, Kadija, K, Ljubicic, A Jr, Vranic, D, Chase, S I, Harris, J W, Odyniec, G, Pugh, H G, Rai, G, Teitelbaum, L, Tonse, S, Derado, I, Eckardt, V, Gebauer, H J, Rauch, W, Schmitz, N, Seyboth, P, Seyerlein, J, Vesztergombi, G, Eschke, J, Heck, W, Kabana, S, Kuehmichel, A, Lahanas, M, Lee, Y, Le Vine, M, Margetis, S, Renfordt, R, Roehrich, D, Rothard, H, Schmidt, E, Schneider, I, Stock, R, Stroebele, H, Wenig, S, Fleischmann, B, Fuchs, M, Gazdzicki, M, Kosiec, J, Skrzypczak, E, Keidel, R, Piper, A, Puehlhofer, F, Nappi, E, Posa, F, Paic, G, Panagiotou, A D, Petridis, A, Vassileiadis, G, Pfenning, J, Wosiek, B, and NA35 Collaboration.
1992.
"Multiplicity distributions in small phase-space domains in central nucleus-nucleus collisions."
Germany.
@misc{etde_10116574,
title = {Multiplicity distributions in small phase-space domains in central nucleus-nucleus collisions}
author = {Baechler, J, Hoffmann, M, Runge, K, Schmoetten, E, Bartke, J, Gladysz, E, Kowalski, M, Stefanski, P, Bialkowska, H, Bock, R, Brockmann, R, Sandoval, A, Buncic, P, Ferenc, D, Kadija, K, Ljubicic, A Jr, Vranic, D, Chase, S I, Harris, J W, Odyniec, G, Pugh, H G, Rai, G, Teitelbaum, L, Tonse, S, Derado, I, Eckardt, V, Gebauer, H J, Rauch, W, Schmitz, N, Seyboth, P, Seyerlein, J, Vesztergombi, G, Eschke, J, Heck, W, Kabana, S, Kuehmichel, A, Lahanas, M, Lee, Y, Le Vine, M, Margetis, S, Renfordt, R, Roehrich, D, Rothard, H, Schmidt, E, Schneider, I, Stock, R, Stroebele, H, Wenig, S, Fleischmann, B, Fuchs, M, Gazdzicki, M, Kosiec, J, Skrzypczak, E, Keidel, R, Piper, A, Puehlhofer, F, Nappi, E, Posa, F, Paic, G, Panagiotou, A D, Petridis, A, Vassileiadis, G, Pfenning, J, Wosiek, B, and NA35 Collaboration}
abstractNote = {Multiplicity distributions of negatively charged particles have been studied in restricted phase space intervals for central S + S, O + Au and S + Au collisions at 200 GeV/nucleon. It is shown that multiplicity distributions are well described by a negative binomial form irrespectively of the size and dimensionality of phase space domain. A clan structure analysis reveals interesting similarities between complex nuclear collisions and a simple partonic shower. The lognormal distribution agrees reasonably well with the multiplicity data in large domains, but fails in the case of small intervals. No universal scaling function was found to describe the shape of multiplicity distributions in phase space intervals of varying size. (orig.).}
place = {Germany}
year = {1992}
month = {Oct}
}
title = {Multiplicity distributions in small phase-space domains in central nucleus-nucleus collisions}
author = {Baechler, J, Hoffmann, M, Runge, K, Schmoetten, E, Bartke, J, Gladysz, E, Kowalski, M, Stefanski, P, Bialkowska, H, Bock, R, Brockmann, R, Sandoval, A, Buncic, P, Ferenc, D, Kadija, K, Ljubicic, A Jr, Vranic, D, Chase, S I, Harris, J W, Odyniec, G, Pugh, H G, Rai, G, Teitelbaum, L, Tonse, S, Derado, I, Eckardt, V, Gebauer, H J, Rauch, W, Schmitz, N, Seyboth, P, Seyerlein, J, Vesztergombi, G, Eschke, J, Heck, W, Kabana, S, Kuehmichel, A, Lahanas, M, Lee, Y, Le Vine, M, Margetis, S, Renfordt, R, Roehrich, D, Rothard, H, Schmidt, E, Schneider, I, Stock, R, Stroebele, H, Wenig, S, Fleischmann, B, Fuchs, M, Gazdzicki, M, Kosiec, J, Skrzypczak, E, Keidel, R, Piper, A, Puehlhofer, F, Nappi, E, Posa, F, Paic, G, Panagiotou, A D, Petridis, A, Vassileiadis, G, Pfenning, J, Wosiek, B, and NA35 Collaboration}
abstractNote = {Multiplicity distributions of negatively charged particles have been studied in restricted phase space intervals for central S + S, O + Au and S + Au collisions at 200 GeV/nucleon. It is shown that multiplicity distributions are well described by a negative binomial form irrespectively of the size and dimensionality of phase space domain. A clan structure analysis reveals interesting similarities between complex nuclear collisions and a simple partonic shower. The lognormal distribution agrees reasonably well with the multiplicity data in large domains, but fails in the case of small intervals. No universal scaling function was found to describe the shape of multiplicity distributions in phase space intervals of varying size. (orig.).}
place = {Germany}
year = {1992}
month = {Oct}
}