Abstract
The industrial refrigeration system design for ammonia plants has changed very little in the past years and the regulation system for each individual evaporator station is kept at a minimum with a solenoid for the liquid line and a regulator for the hot gas defrost. However, in the machine room there has been extensive development with the introduction of high-performance screw compressors with speed regulators and more efficient regulation systems. With this project, Danish Technological Institute has evaluated that possibilities exist for building more advanced systems at each evaporator system as the savings potential lies in the low-temperature control. There are some technical challenges involved in the development of cost-effective pumps and ejectors for this purpose and the work has commenced. It is possible that the components will be available in the market within few years. The measurement gave some basic data for Koerting to develop an ejector for the refrigeration market. Similarly, the project has provided Grundfos with basic knowledge about the performance requirements for small refrigerant circulation pumps used for establishing local circulation. It is a clear conclusion of the project that using small pumps for local ammonia circulation is beneficial to the performance as well as the
More>>
Citation Formats
Moensted, A.
Elimination of wet return lines in ammonia systems. High-efficiency systems for energy reduction in industrial refrigeration plants with ammonia.
Denmark: N. p.,
2011.
Web.
Moensted, A.
Elimination of wet return lines in ammonia systems. High-efficiency systems for energy reduction in industrial refrigeration plants with ammonia.
Denmark.
Moensted, A.
2011.
"Elimination of wet return lines in ammonia systems. High-efficiency systems for energy reduction in industrial refrigeration plants with ammonia."
Denmark.
@misc{etde_1011563,
title = {Elimination of wet return lines in ammonia systems. High-efficiency systems for energy reduction in industrial refrigeration plants with ammonia}
author = {Moensted, A}
abstractNote = {The industrial refrigeration system design for ammonia plants has changed very little in the past years and the regulation system for each individual evaporator station is kept at a minimum with a solenoid for the liquid line and a regulator for the hot gas defrost. However, in the machine room there has been extensive development with the introduction of high-performance screw compressors with speed regulators and more efficient regulation systems. With this project, Danish Technological Institute has evaluated that possibilities exist for building more advanced systems at each evaporator system as the savings potential lies in the low-temperature control. There are some technical challenges involved in the development of cost-effective pumps and ejectors for this purpose and the work has commenced. It is possible that the components will be available in the market within few years. The measurement gave some basic data for Koerting to develop an ejector for the refrigeration market. Similarly, the project has provided Grundfos with basic knowledge about the performance requirements for small refrigerant circulation pumps used for establishing local circulation. It is a clear conclusion of the project that using small pumps for local ammonia circulation is beneficial to the performance as well as the energy efficiency of the system. The overall savings potential of the three evaporators amounts to between 13 and 19%. (LN)}
place = {Denmark}
year = {2011}
month = {Jan}
}
title = {Elimination of wet return lines in ammonia systems. High-efficiency systems for energy reduction in industrial refrigeration plants with ammonia}
author = {Moensted, A}
abstractNote = {The industrial refrigeration system design for ammonia plants has changed very little in the past years and the regulation system for each individual evaporator station is kept at a minimum with a solenoid for the liquid line and a regulator for the hot gas defrost. However, in the machine room there has been extensive development with the introduction of high-performance screw compressors with speed regulators and more efficient regulation systems. With this project, Danish Technological Institute has evaluated that possibilities exist for building more advanced systems at each evaporator system as the savings potential lies in the low-temperature control. There are some technical challenges involved in the development of cost-effective pumps and ejectors for this purpose and the work has commenced. It is possible that the components will be available in the market within few years. The measurement gave some basic data for Koerting to develop an ejector for the refrigeration market. Similarly, the project has provided Grundfos with basic knowledge about the performance requirements for small refrigerant circulation pumps used for establishing local circulation. It is a clear conclusion of the project that using small pumps for local ammonia circulation is beneficial to the performance as well as the energy efficiency of the system. The overall savings potential of the three evaporators amounts to between 13 and 19%. (LN)}
place = {Denmark}
year = {2011}
month = {Jan}
}