Abstract
Since 1988 ANDRA is involved in the HAW project, a test disposal of high level radioactive canisters in a salt dome, at Asse in FRG. ANDRA is responsible of in situ measurements, laboratory analyses and predictive calculations. Thus are delayed in situ dose measurements. Two methods have been developed, one is based on thermoluminescent dosemeters and measure an integrated dose, the other uses ionization chambers and gives a dose rate. Specific equipments had to be developed: manufacturing and testing. Geomechanics is also concerned by in situ measurement, especially rocksalt deformation, induced by the heat production of the canisters. Three groups of tiltmeters have been installed, providing informations on both natural creeping of rocksalt and effect of electrical heating in two boreholes. Laboratory studies consist in analyzing gases released by Asse salt samples irradiated under various conditions. Most of the 150 sample irradiations are completed. The last topic to the project intends to predict gamma ray flux and spectrum in the HAW test field using computer models. The work carried out and discussed includes digitalization of test data (sources, borehole lining, rocksalt), Bremsstrahlung sensitivity analysis, and calculation of both energy deposited and dose rate around the sources. This calculation was performed
More>>
Palut, J M
[1]
- CEA/ANDRA, 92 - Fontenay-aux-Roses (FR)
Citation Formats
Palut, J M.
Irradiation effects on the rock-salt HAW-Asse Project; Effets de l`irradiation sur le sel gemme Projet HAW-Asse.
France: N. p.,
1991.
Web.
Palut, J M.
Irradiation effects on the rock-salt HAW-Asse Project; Effets de l`irradiation sur le sel gemme Projet HAW-Asse.
France.
Palut, J M.
1991.
"Irradiation effects on the rock-salt HAW-Asse Project; Effets de l`irradiation sur le sel gemme Projet HAW-Asse."
France.
@misc{etde_10114232,
title = {Irradiation effects on the rock-salt HAW-Asse Project; Effets de l`irradiation sur le sel gemme Projet HAW-Asse}
author = {Palut, J M}
abstractNote = {Since 1988 ANDRA is involved in the HAW project, a test disposal of high level radioactive canisters in a salt dome, at Asse in FRG. ANDRA is responsible of in situ measurements, laboratory analyses and predictive calculations. Thus are delayed in situ dose measurements. Two methods have been developed, one is based on thermoluminescent dosemeters and measure an integrated dose, the other uses ionization chambers and gives a dose rate. Specific equipments had to be developed: manufacturing and testing. Geomechanics is also concerned by in situ measurement, especially rocksalt deformation, induced by the heat production of the canisters. Three groups of tiltmeters have been installed, providing informations on both natural creeping of rocksalt and effect of electrical heating in two boreholes. Laboratory studies consist in analyzing gases released by Asse salt samples irradiated under various conditions. Most of the 150 sample irradiations are completed. The last topic to the project intends to predict gamma ray flux and spectrum in the HAW test field using computer models. The work carried out and discussed includes digitalization of test data (sources, borehole lining, rocksalt), Bremsstrahlung sensitivity analysis, and calculation of both energy deposited and dose rate around the sources. This calculation was performed for 50 points, requiring 400 runs of Mercure-5 models. Interpolation functions are also provided in order to give values between these 50 points. The next step aim to determine gamma spectrum in salt and also energy deposited at various locations in the dummy canister where samples are intended to be emplaced. TRIPOLI-2 Model will be used for these purposes.}
place = {France}
year = {1991}
month = {Dec}
}
title = {Irradiation effects on the rock-salt HAW-Asse Project; Effets de l`irradiation sur le sel gemme Projet HAW-Asse}
author = {Palut, J M}
abstractNote = {Since 1988 ANDRA is involved in the HAW project, a test disposal of high level radioactive canisters in a salt dome, at Asse in FRG. ANDRA is responsible of in situ measurements, laboratory analyses and predictive calculations. Thus are delayed in situ dose measurements. Two methods have been developed, one is based on thermoluminescent dosemeters and measure an integrated dose, the other uses ionization chambers and gives a dose rate. Specific equipments had to be developed: manufacturing and testing. Geomechanics is also concerned by in situ measurement, especially rocksalt deformation, induced by the heat production of the canisters. Three groups of tiltmeters have been installed, providing informations on both natural creeping of rocksalt and effect of electrical heating in two boreholes. Laboratory studies consist in analyzing gases released by Asse salt samples irradiated under various conditions. Most of the 150 sample irradiations are completed. The last topic to the project intends to predict gamma ray flux and spectrum in the HAW test field using computer models. The work carried out and discussed includes digitalization of test data (sources, borehole lining, rocksalt), Bremsstrahlung sensitivity analysis, and calculation of both energy deposited and dose rate around the sources. This calculation was performed for 50 points, requiring 400 runs of Mercure-5 models. Interpolation functions are also provided in order to give values between these 50 points. The next step aim to determine gamma spectrum in salt and also energy deposited at various locations in the dummy canister where samples are intended to be emplaced. TRIPOLI-2 Model will be used for these purposes.}
place = {France}
year = {1991}
month = {Dec}
}