You need JavaScript to view this

The thermal perturbation of the Z{sub 5} quantum chain with Fateev-Zamolodchikov symmetry; Die thermische Stoerung der Z{sub 5}-Quantenkette mit Fateev-Zamolodchikov-Symmetrie

Thesis/Dissertation:

Abstract

We calculate numerically the lowest levels in the spectrum of the Z{sub 5} Fateev-Zamolodchikov quantum chain perturbed by a thermal operator. We find that the ground state energy of the quantum chain is consistent with the result of the thermodynamic Bethe-Ansatz calculations. The finite-size corrections to the one-particle energies are compared with results obtained by Klassen and Melzer. At least for states with two equal particles the scattering phase shift calculated by Luescher`s method reproduces the minimal solution for the S-matrix given by Koeberle and Swieca. For two-particle states with different particles this method does not work. In a second part of the work we investigate the level statistics of a Z{sub 3}-invariant quantum chain. For some of the integrable points recently proposed by de Vega and Lopes we find Poisson statistics. The other ones display level repulsion. (orig.).
Authors:
Publication Date:
Jul 01, 1991
Product Type:
Thesis/Dissertation
Report Number:
BONN-IR-91-44
Reference Number:
SCA: 662110; 661100; PA: DEN-92:000334; SN: 92000645213
Resource Relation:
Other Information: TH: Diploma Thesis; PBD: Jul 1991
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; LATTICE FIELD THEORY; MASS SPECTRA; DISTURBANCES; EXCITED STATES; BOUNDARY CONDITIONS; CORRECTIONS; QUANTUM MECHANICS; POTENTIAL SCATTERING; S MATRIX; TWO-BODY PROBLEM; PHASE SHIFT; HAMILTONIANS; TEMPERATURE DEPENDENCE; PHASE DIAGRAMS; DISPERSION RELATIONS; REST MASS; CONFORMAL INVARIANCE; SYMMETRY; 662110; 661100; THEORY OF FIELDS AND STRINGS; CLASSICAL AND QUANTUM MECHANICS
OSTI ID:
10114085
Research Organizations:
Bonn Univ. (Germany). Physikalisches Inst.; Bonn Univ. (Germany). Mathematisch-Naturwissenschaftliche Fakultaet
Country of Origin:
Germany
Language:
German
Other Identifying Numbers:
Other: ON: DE92758915; TRN: DE9200334
Availability:
OSTI; NTIS (US Sales Only); INIS
Submitting Site:
DEN
Size:
76 p.
Announcement Date:
Jun 30, 2005

Thesis/Dissertation:

Citation Formats

Kaldenbach, L. The thermal perturbation of the Z{sub 5} quantum chain with Fateev-Zamolodchikov symmetry; Die thermische Stoerung der Z{sub 5}-Quantenkette mit Fateev-Zamolodchikov-Symmetrie. Germany: N. p., 1991. Web.
Kaldenbach, L. The thermal perturbation of the Z{sub 5} quantum chain with Fateev-Zamolodchikov symmetry; Die thermische Stoerung der Z{sub 5}-Quantenkette mit Fateev-Zamolodchikov-Symmetrie. Germany.
Kaldenbach, L. 1991. "The thermal perturbation of the Z{sub 5} quantum chain with Fateev-Zamolodchikov symmetry; Die thermische Stoerung der Z{sub 5}-Quantenkette mit Fateev-Zamolodchikov-Symmetrie." Germany.
@misc{etde_10114085,
title = {The thermal perturbation of the Z{sub 5} quantum chain with Fateev-Zamolodchikov symmetry; Die thermische Stoerung der Z{sub 5}-Quantenkette mit Fateev-Zamolodchikov-Symmetrie}
author = {Kaldenbach, L}
abstractNote = {We calculate numerically the lowest levels in the spectrum of the Z{sub 5} Fateev-Zamolodchikov quantum chain perturbed by a thermal operator. We find that the ground state energy of the quantum chain is consistent with the result of the thermodynamic Bethe-Ansatz calculations. The finite-size corrections to the one-particle energies are compared with results obtained by Klassen and Melzer. At least for states with two equal particles the scattering phase shift calculated by Luescher`s method reproduces the minimal solution for the S-matrix given by Koeberle and Swieca. For two-particle states with different particles this method does not work. In a second part of the work we investigate the level statistics of a Z{sub 3}-invariant quantum chain. For some of the integrable points recently proposed by de Vega and Lopes we find Poisson statistics. The other ones display level repulsion. (orig.).}
place = {Germany}
year = {1991}
month = {Jul}
}